Skip to main content

Advertisement

Log in

Technologies and logistics for phosphorus recovery from livestock waste

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Phosphorus (P) runoff from livestock waste can trigger algal blooms that adversely affect aquatic life and human health. One strategy to mitigate this problem is to install nutrient recovery technologies that concentrate and mobilize nutrients from nutrient-rich regions to nutrient-deficient ones. We present supply chain design formulations to identify optimal types and locations for P recovery technologies. The formulations capture trade-offs in transportation costs, technology efficiency, investment/operational costs, revenue collected from different recovered products (struvite and nutrient cakes), and environmental impact. Our computational framework is used to analyze the impact of different scenarios for market prices of recovered products, recovery yields, and remediation costs. We find that transportation of waste alone (without any processing) can achieve significant reductions in environmental impact at low cost, but cannot achieve economic sustainability in the long run due to the lack of direct revenue streams. Mechanical separation technologies that recover P in the form of nutrient cakes are low-cost solutions that can achieve high environmental benefits and reduced transportation costs, but revenues are also limited due to low values of the cakes. Struvite crystallization in fluidized beds is found to be a highly attractive option under current struvite prices, but economic sustainability is strongly dependent on yield recoveries (which are currently highly uncertain).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar M, Saez J, Llorens M, Soler A, Ortuno J (2002) Nutrient removal and sludge production in the coagulation–flocculation process. Water Res 36(11):2910–2919

    Article  CAS  Google Scholar 

  • Bhuiyan M, Mavinic D, Koch F (2008) Phosphorus recovery from wastewater through struvite formation in fluidized bed reactors: a sustainable approach. Water Sci Technol 57(2):175–181

    Article  CAS  Google Scholar 

  • Bockstael NE, Freeman AM, Kopp RJ, Portney PR, Smith VK (2000) On measuring economic values for nature. Environ Sci Technol 34(8):1384–1389

    Article  CAS  Google Scholar 

  • Chapuis-Lardy L, Fiorini J, Toth J, Dou Z (2004) Phosphorus concentration and solubility in dairy feces: variability and affecting factors. J Dairy Sci 87(12):4334–4341

    Article  CAS  Google Scholar 

  • Childers DL, Corman J, Edwards M, Elser JJ (2011) Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle. Bioscience 61(2):117–124

    Article  Google Scholar 

  • Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change 19(2):292–305

    Article  Google Scholar 

  • Cordell D, Rosemarin A, Schröder J, Smit A (2011) Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere 84(6):747–758

    Article  CAS  Google Scholar 

  • Costanza R, d’Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’neill RV, Paruelo J et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387(6630):253–260

    Article  CAS  Google Scholar 

  • Cucarella V, Zaleski T, Mazurek R, Renman G (2008) Effect of reactive substrates used for the removal of phosphorus from wastewater on the fertility of acid soils. Bioresour Technol 99(10):4308–4314

    Article  CAS  Google Scholar 

  • Dockhorn T (2009) About the economy of phosphorus recovery. In: International conference on nutrient recovery from wastewater systems. IWA Publishing Vancouver, pp 145–158

  • Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts KL, Riley AJ, Schloesser JT, Thornbrugh DJ (2008) Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ Sci Technol 43(1):12–19

    Article  CAS  Google Scholar 

  • Doyle JD, Parsons SA (2002) Struvite formation, control and recovery. Water Res 36(16):3925–3940

    Article  CAS  Google Scholar 

  • Gerritse R, Vriesema R (1984) Phosphate distribution in animal waste slurries. J Agric Sci 102(1):159–161

    Article  CAS  Google Scholar 

  • Güngör K, Karthikeyan K (2005a) Influence of anaerobic digestion on dairy manure phosphorus extractability. Trans ASAE 48(4):1497–1507

    Article  Google Scholar 

  • Güngör K, Karthikeyan K (2005b) Probable phosphorus solid phases and their stability in anaerobically digested dairy manure. Trans ASAE 48(4):1509–1520

    Article  Google Scholar 

  • Gurian-Sherman D (2008) CAFOs uncovered: the untold costs of confined animal feeding operations. Union of Concerned Scientists, Cambridge

    Google Scholar 

  • Gustafsson JP, Renman A, Renman G, Poll K (2008) Phosphate removal by mineral-based sorbents used in filters for small-scale wastewater treatment. Water Res 42(1):189–197

    Article  CAS  Google Scholar 

  • He Z, Griffin TS, Honeycutt CW (2004) Phosphorus distribution in dairy manures. J Environ Qual 33(4):1528–1534

    Article  CAS  Google Scholar 

  • Hernández B, León E, Martín M (2017) Bio-waste selection and blending for the optimal production of power and fuels via anaerobic digestion. Chem Eng Res Des 121:163–172

    Article  CAS  Google Scholar 

  • Hylander LD, Kietlińska A, Renman G, Simán G (2006) Phosphorus retention in filter materials for wastewater treatment and its subsequent suitability for plant production. Bioresour Technol 97(7):914–921

    Article  CAS  Google Scholar 

  • Jin Y, Hu Z, Wen Z (2009) Enhancing anaerobic digestibility and phosphorus recovery of dairy manure through microwave-based thermochemical pretreatment. Water Res 43(14):3493–3502

    Article  CAS  Google Scholar 

  • Lin H, Gan J, Rajendran A, Reis CER, Hu B (2015) Phosphorus removal and recovery from digestate after biogas production. In: Biernat K et al (eds) Biofuels-status and perspective. Chapter 24. InTech, Rijeka, pp 517–546

    Google Scholar 

  • Ma J, Kennedy N, Yorgey G, Frear C (2013) Review of emerging nutrient recovery technologies for farm-based anaerobic digesters and other renewable energy systems. Report to the Innovation Center for U.S, Dairy

  • Martín-Hernández E, Sampat AM, Zavala VM, Martín M (2017) Optimal integrated facility for waste processing. Chem Eng Res Des 131:160–182

    Article  CAS  Google Scholar 

  • Mathers J, Wolfe C, Norsworthy M, Craft E (2014) The green freight handbook. Environmental Defense Fund, New York

    Google Scholar 

  • Meixner K, Fuchs W, Valkova T, Svardal K, Loderer C, Neureiter M, Bochmann G, Drosg B (2015) Effect of precipitating agents on centrifugation and ultrafiltration performance of thin stillage digestate. Sep Purif Technol 145:154–160

    Article  CAS  Google Scholar 

  • Minnesota Pollution Control Agency (2017) Effluent total phosphorus reduction efforts by wastewater treatment plants. https://www.pca.state.mn.us. Online; accessed 19-Oct-2017

  • Paudel KP, Bhattarai K, Gauthier WM, Hall LM (2009) Geographic information systems (GIS) based model of dairy manure transportation and application with environmental quality consideration. Waste Manag 29(5):1634–1643

    Article  CAS  Google Scholar 

  • Peters MS, Timmerhaus KD, West RE, Timmerhaus K, West R (1968) Plant design and economics for chemical engineers, vol 4. McGraw-Hill, New York

    Google Scholar 

  • Pratt C, Parsons SA, Soares A, Martin BD (2012) Biologically and chemically mediated adsorption and precipitation of phosphorus from wastewater. Curr Opin Biotechnol 23(6):890–896

    Article  CAS  Google Scholar 

  • Pretty JN, Mason CF, Nedwell DB, Hine RE, Leaf S, Dils R (2003) Environmental costs of freshwater Eutrophication in England and Wales. Environ Sci Technol 57(2):201–208

    Article  CAS  Google Scholar 

  • Qureshi A, Lo KV, Liao PH (2008) Microwave treatment and struvite recovery potential of dairy manure. J Environ Sci Health Part B 43(4):350–357

    Article  CAS  Google Scholar 

  • Sampat AM, Martín E, Martín M, Zavala VM (2017) Optimization formulations for multi-product supply chain networks. Comput Chem Eng 104:296–310

    Article  CAS  Google Scholar 

  • Schuiling R, Andrade A (1999) Recovery of struvite from calf manure. Environ Technol 20(7):765–768

    Article  CAS  Google Scholar 

  • Spash CL, Vatn A (2006) Transferring environmental value estimates: issues and alternatives. Ecol Econ 60(2):379–388

    Article  Google Scholar 

  • Szabó A, Takács I, Murthy S, Daigger G, Licskó I, Smith S (2008) Significance of design and operational variables in chemical phosphorus removal. Water Environ Res 80(5):407–416

    Article  CAS  Google Scholar 

  • U.S. EPA (2014) Wisconsin integrated assessment of watershed health, Technical report

  • USDA - National Agricultural Statistics Service (2014) 2012 census of agriculture highlights: dairy cattle and milk production, Technical report

  • Wilsenach J, Schuurbiers C, Van Loosdrecht M (2007) Phosphate and potassium recovery from source separated urine through struvite precipitation. Water Res 41(2):458–466

    Article  CAS  Google Scholar 

  • Wisconsin Department of Natural Resources (2017) Wisconsin CAFO permitted operations available at http://dnr.wi.gov/topic/AgBusiness/data/CAFO/cafo_all.asp. Online; accessed 04-Feb-2017

  • Ylivainio K, Turtola E (2013) Solubility and plant-availability of p in manure. Technical report, Baltic forum for innovative technologies for sustainable manure management

  • Zeng L, Li X (2006) Nutrient removal from anaerobically digested cattle manure by struvite precipitation. J Environ Eng Sci 5(4):285–294

    Article  CAS  Google Scholar 

  • Zhang H, Lo VK, Thompson JR, Koch FA, Liao PH, Lobanov S, Mavinic DS, Atwater JW (2015) Recovery of phosphorus from dairy manure: a pilot-scale study. Environ Technol 36(11):1398–1404

    Article  CAS  Google Scholar 

  • Zhang T, Bowers KE, Harrison JH, Chen S (2010) Releasing phosphorus from calcium for struvite fertilizer production from anaerobically digested dairy effluent. Water Environ Res 82(1):34–42

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the National Science Foundation (under Grant CBET-1604374) and MINECO (under Grant DPI2015-67341-C2-1-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor M. Zavala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampat, A.M., Martín-Hernández, E., Martín, M. et al. Technologies and logistics for phosphorus recovery from livestock waste. Clean Techn Environ Policy 20, 1563–1579 (2018). https://doi.org/10.1007/s10098-018-1546-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-018-1546-y

Keywords

Navigation