Advertisement

Clean Technologies and Environmental Policy

, Volume 20, Issue 5, pp 911–924 | Cite as

Integrating bioelectrochemical systems for sustainable wastewater treatment

  • Veera Gnaneswar Gude
Review Paper

Abstract

Current wastewater treatment processes such as activated sludge process and other aeration technologies are resource-consuming and are unsustainable. Novel and integrated processes are crucial to the development of sustainable wastewater treatment systems. In this context, anaerobic treatment technologies provide numerous opportunities for minimization of energy and resource consumption and maximization of beneficial products. Further, integration of anaerobic digestion augmented by co-digestion, fermentation, dark fermentation or photo-fermentation and other bioelectrochemical systems may result in resource-efficient waste management and environmental protection. This mini-review discusses various possibilities and highlights recent developments of integrated aerobic and anaerobic technologies with bioelectrochemical systems for sustainable wastewater treatment.

Keywords

Anaerobic digestion Bioelectrochemical systems Biorefineries Clean technologies Fermentation Microbial fuel cells Sustainability 

Notes

Acknowledgements

The author acknowledges the NSF EAGER Award No. 1632019.

References

  1. Alzate-Gaviria L, García-Rodríguez O, Flota-Bañuelos M, Del Rio Jorge-Rivera F, Cámara-Chalé G, Domínguez-Maldonado J (2016) Stacked-MFC into a typical septic tank used in public housing. Biofuels 7(2):79–86CrossRefGoogle Scholar
  2. Arana TJ, Gude VG (2018) A microbial desalination process with microalgae biocathode using sodium bicarbonate as an inorganic carbon source. Int Biodeterior Biodegrad 130:91–97CrossRefGoogle Scholar
  3. Azwar MY, Hussain MA, Abdul-Wahab AK (2014) Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. Renew Sustain Energy Rev 31:158–173CrossRefGoogle Scholar
  4. Baicha Z, Salar-García MJ, Ortiz-Martínez VM, Hernández-Fernández FJ, De los Rios AP, Labjar N, Lotfi E, Elmahi M (2016) A critical review on microalgae as an alternative source for bioenergy production: a promising low cost substrate for microbial fuel cells. Fuel Process Technol 154:104–116CrossRefGoogle Scholar
  5. Bajracharya S, Sharma M, Mohanakrishna G, Benneton XD, Strik DP, Sarma PM, Pant D (2016) An overview on emerging bioelectrochemical systems (BESs): technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renewable Energy 98:153–170CrossRefGoogle Scholar
  6. Bajracharya S, Srikanth S, Mohanakrishna G, Zacharia R, Strik DP, Pant D (2017) Biotransformation of carbon dioxide in bioelectrochemical systems: state of the art and future prospects. J Power Sources 356:256–273CrossRefGoogle Scholar
  7. Barbosa MJ, Rocha JM, Tramper J, Wijffels RH (2001) Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J Biotechnol 85(1):25–33CrossRefGoogle Scholar
  8. Bensaid S, Ruggeri B, Saracco G (2015) Development of a photosynthetic microbial electrochemical cell (PMEC) reactor coupled with dark fermentation of organic wastes: medium term perspectives. Energies 8(1):399–429CrossRefGoogle Scholar
  9. Blair MF, Kokabian B, Gude VG (2014) Light and growth medium effect on Chlorella vulgaris biomass production. Journal of Environmental Chemical Engineering 2(1):665–674CrossRefGoogle Scholar
  10. Borole AP, Mielenz JR, Vishnivetskaya TA, Hamilton CY (2009) Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells. Biotechnol Biofuels 2(1):7CrossRefGoogle Scholar
  11. Castro C (2014) The green latrine: development of a large scale microbial fuel cell for the treatment of human waste in developing areas. University of Massachusetts, AmherstGoogle Scholar
  12. Catal T, Li K, Bermek H, Liu H (2008) Electricity production from twelve monosaccharides using microbial fuel cells. J Power Sources 175(1):196–200CrossRefGoogle Scholar
  13. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Biores Technol 99(10):4044–4064CrossRefGoogle Scholar
  14. Cheng KY, Kaksonen AH (2017) Integrating microbial electrochemical technologies with anaerobic digestion for waste treatment: possibilities and perspectives. In: Current developments in biotechnology and bioengineering: solid waste management, pp 191–221CrossRefGoogle Scholar
  15. Colombo A, Marzorati S, Lucchini G, Cristiani P, Pant D, Schievano A (2017) Assisting cultivation of photosynthetic microorganisms by microbial fuel cells to enhance nutrients recovery from wastewater. Biores Technol 237:240–248CrossRefGoogle Scholar
  16. Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD, Liu G, Logan BE (2011) Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol 89(6):2053–2063CrossRefGoogle Scholar
  17. De Gioannis G, Muntoni A, Polettini A, Pomi R (2013) A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manag 33(6):1345–1361CrossRefGoogle Scholar
  18. Dupla M, Conte T, Bouvier JC, Bernet N, Steyer JP (2004) Dynamic evaluation of a fixed bed anaerobic digestion process in response to organic overloads and toxicant shock loads. Water Sci Technol 49(1):61–68CrossRefGoogle Scholar
  19. Fangzhou D, Zhenglong L, Shaoqiang Y, Beizhen X, Hong L (2011) Electricity generation directly using human feces wastewater for life support system. Acta Astronaut 68(9):1537–1547CrossRefGoogle Scholar
  20. Fradler KR, Kim JR, Shipley G, Massanet-Nicolau J, Dinsdale RM, Guwy AJ, Premier GC (2014) Operation of a bioelectrochemical system as a polishing stage for the effluent from a two-stage biohydrogen and biomethane production process. Biochem Eng J 85:125–131CrossRefGoogle Scholar
  21. Gude VG (2015a) Energy and water autarky of wastewater treatment and power generation systems. Renew Sustain Energy Rev 45:52–68CrossRefGoogle Scholar
  22. Gude VG (2015b) Energy positive wastewater treatment and sludge management. Edorium Journal of Waste Management 1:10–15Google Scholar
  23. Gude VG (2015c) A new perspective on microbiome and resource management in wastewater systems. Journal of Biotechnology & Biomaterials 5(2):1Google Scholar
  24. Gude VG (2016) Wastewater treatment in microbial fuel cells—an overview. J Clean Prod 122:287–307CrossRefGoogle Scholar
  25. Gude V, Kokabian B, Gadhamshetty V (2013) Beneficial bioelectrochemical systems for energy, water, and biomass production. Journal of Microbial & Biochemical Technology 6:2Google Scholar
  26. Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenerg 13(1–2):83–114CrossRefGoogle Scholar
  27. Guo XM, Trably E, Latrille E, Carrere H, Steyer JP (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrogen Energy 35(19):10660–10673CrossRefGoogle Scholar
  28. Haandel AC, Lettinga G (1994) Anaerobic sewage treatment. Wiley, New YorkGoogle Scholar
  29. Heidrich ES, Edwards SR, Dolfing J, Cotterill SE, Curtis TP (2014) Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperatures 394 for a 12 month period. Bioresour Technol 173(87–95):395.  https://doi.org/10.1016/j.biortech.2014.09.083 CrossRefGoogle Scholar
  30. Hillmer P, Gest H (1977) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J Bacteriol 129(2):724–731Google Scholar
  31. Ieropoulos I, Greenman J, Melhuish C (2012) Urine utilisation by microbial fuel cells; energy fuel for the future. Phys Chem Chem Phys 14(1):94–98CrossRefGoogle Scholar
  32. Ieropoulos I, Stinchcombe A, Gajda I, Forbes S, Merino-Jimenez I, Pasternak G, Sanchez-Herranz D, Greenman J (2016) Pee power urinal–microbial fuel cell technology field trials in the context of sanitation. Environ Sci Water Res Technol 2(2):336–343CrossRefGoogle Scholar
  33. Karube I, Matsunaga T, Tsuru S, Suzuki S (1977) Biochemical fuel cell utilizing immobilized cells of Clostridium butyricum. Biotechnol Bioeng 19(11):1727–1733CrossRefGoogle Scholar
  34. Kim T, An J, Jang JK, Chang IS (2015) Coupling of anaerobic digester and microbial fuel cell for COD removal and ammonia recovery. Biores Technol 195:217–222CrossRefGoogle Scholar
  35. Kokabian B, Gude VG (2013) Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production. Environmental Science: Processes & Impacts 15(12):2178–2185Google Scholar
  36. Kokabian B, Gude VG (2015) Sustainable photosynthetic biocathode in microbial desalination cells. Chem Eng J 262:958–965CrossRefGoogle Scholar
  37. Kokabian B, Ghimire U, Gude VG (2018a) Water deionization with renewable energy production in microalgae-microbial desalination process. Renewable Energy 122:354–361CrossRefGoogle Scholar
  38. Kokabian B, Gude VG, Smith R, Brooks JP (2018b) Evaluation of anammox biocathode in microbial desalination and wastewater treatment. Chem Eng J 15(342):410–419CrossRefGoogle Scholar
  39. Kokabian B, Smith R, Brooks JP, Gude VG (2018c) Bioelectricity production in photosynthetic microbial desalination cells under different flow configurations. J Ind Eng Chem 58:131–139CrossRefGoogle Scholar
  40. Ledda C, Schievano A, Salati S, Adani F (2013) Nitrogen and water recovery from animal slurries by a new integrated ultrafiltration, reverse osmosis and cold stripping process: a case study. Water Res 47(16):6157–6166CrossRefGoogle Scholar
  41. Li C, Fang HH (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Critical Reviews in Environmental Science and Technology 37(1):1–39CrossRefGoogle Scholar
  42. Li X, Abu-Reesh IM, He Z (2015) Development of bioelectrochemical systems to promote sustainable agriculture. Agriculture 5(3):367–388CrossRefGoogle Scholar
  43. Li Y, Styczynski J, Huang Y, Xu Z, McCutcheon J, Li B (2017) Energy-positive wastewater treatment and desalination in an integrated microbial desalination cell (MDC)-microbial electrolysis cell (MEC). J Power Sources 356:529–538CrossRefGoogle Scholar
  44. Logan BE, Call D, Cheng S, Hamelers HV, Sleutels TH, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42(23):8630–8640CrossRefGoogle Scholar
  45. Lu L, Ren ZJ (2016) Microbial electrolysis cells for waste biorefinery: a state of the art review. Biores Technol 215:254–264CrossRefGoogle Scholar
  46. Mara D, Pearson H (1998) Design manual for waste stabilization ponds in mediterranean countries. Lagoon Technology International Ltd, LeedsGoogle Scholar
  47. Martinez-Guerra E, Gude VG (2016) Energy aspects of microalgal biodiesel production. Aims Energy 4(2):347–362CrossRefGoogle Scholar
  48. Martinez-Guerra E, Gude VG, Mondala A, Holmes W, Hernandez R (2014) Microwave and ultrasound enhanced extractive-transesterification of algal lipids. Appl Energy 129:354–363CrossRefGoogle Scholar
  49. Martinez-Guerra E, Howlader MS, Shields-Menard S, French WT, Gude VG (2018) Optimization of wet microalgal FAME production from Nannochloropsis sp. under the synergistic microwave and ultrasound effect. Int J Energy Res 42:1934–1949CrossRefGoogle Scholar
  50. Martinucci E, Pizza F, Perrino D, Colombo A, Trasatti SPM, Lazzarini A, Barnabei A, Liberale A, Cristiani P (2015) Energy balance and microbial fuel cells experimentation at wastewater treatment plant Milano-Nosedo. Int J Hydrogen Energy 40(42):14683–14689CrossRefGoogle Scholar
  51. Metcalf E, Eddy M (2014) Wastewater engineering: treatment and resource recovery. Mc Graw-Hill, New YorkGoogle Scholar
  52. Min B, Kim J, Oh S, Regan JM, Logan BE (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39(20):4961–4968CrossRefGoogle Scholar
  53. Miyake J, Tomizuka N, Kamibayashi A (1982) Prolonged photo-hydrogen production by Rhodospirillum rubrum. Journal of Fermentation Technology 60(3):199–203Google Scholar
  54. Niessen J, Schröder U, Rosenbaum M, Scholz F (2004) Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochem Commun 6(6):571–575CrossRefGoogle Scholar
  55. Otondo A, Kokabian B, Stuart-Dahl S, Gude VG (2018) Energetic evaluation of wastewater treatment using microalgae, Chlorella vulgaris. J Environ Chem Eng.  https://doi.org/10.1016/j.jece.2018.04.064 CrossRefGoogle Scholar
  56. Pandey P, Shinde VN, Deopurkar RL, Kale SP, Patil SA, Pant D (2016) Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy 168:706–723CrossRefGoogle Scholar
  57. Pant D, Van Bogaert G, Alvarez-Gallego Y, Diels L, Vanbroekhoven K (2016) Evaluation of bioelectrogenic potential of four industrial effluents as substrate for low cost microbial fuel cells operation. Environmental Engineering & Management Journal (EEMJ) 51(8):1897–1904CrossRefGoogle Scholar
  58. Pasupuleti SB, Srikanth S, Mohan SV, Pant D (2015) Development of exoelectrogenic bioanode and study on feasibility of hydrogen production using abiotic VITO-CoRE™ and VITO-CASE™ electrodes in a single chamber microbial electrolysis cell (MEC) at low current densities. Biores Technol 195:131–138CrossRefGoogle Scholar
  59. Pham TH, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N, Verstraete W (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6(3):285–292CrossRefGoogle Scholar
  60. Premier GC, Kim JR, Massanet-Nicolau J, Kyazze G, Esteves SRR, Penumathsa BK, Rodríguez J, Maddy J, Dinsdale RM, Guwy AJ (2013) Integration of biohydrogen, biomethane and bioelectrochemical systems. Renewable Energy 49:188–192CrossRefGoogle Scholar
  61. Rosenbaum M, Schröder U, Scholz F (2005) Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell. Appl Microbiol Biotechnol 68(6):753–756CrossRefGoogle Scholar
  62. Rosenbaum M, Zhao F, Schröder U, Scholz F (2006) Interfacing electrocatalysis and biocatalysis with tungsten carbide: a high-performance, noble-metal-free microbial fuel cell. Angew Chem Int Ed 45(40):6658–6661CrossRefGoogle Scholar
  63. Rozendal RA, Hamelers HV, Rabaey K, Keller J, Buisman CJ (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26(8):450–459CrossRefGoogle Scholar
  64. Rózsenberszki T, Koók L, Bakonyi P, Nemestóthy N, Logroño W, Pérez M, Urquizo G, Recalde C, Kurdi R, Sarkady A (2017) Municipal waste liquor treatment via bioelectrochemical and fermentation (H2 + CH4) processes: assessment of various technological sequences. Chemosphere 171:692–701CrossRefGoogle Scholar
  65. Sasikala K, Ramana CV, Rao PR (1991) Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides OU 001. Int J Hydrogen Energy 16(9):597–601CrossRefGoogle Scholar
  66. Schievano A, Tenca A, Scaglia B, Merlino G, Rizzi A, Daffonchio D, Oberti R, Adani F (2012) Two-stage vs single-stage thermophilic anaerobic digestion: comparison of energy production and biodegradation efficiencies. Environ Sci Technol 46(15):8502–8510CrossRefGoogle Scholar
  67. Schievano A, Sciarria TP, Gao YC, Scaglia B, Salati S, Zanardo M, Quiao W, Dong R, Adani F (2016) Dark fermentation, anaerobic digestion and microbial fuel cells: an integrated system to valorize swine manure and rice bran. Waste Manag 56:519–529CrossRefGoogle Scholar
  68. Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical Chemistry Chemical Physics 9(21):2619–2629CrossRefGoogle Scholar
  69. Schröder U, Nießen J, Scholz F (2003) A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew Chem Int Ed 42(25):2880–2883CrossRefGoogle Scholar
  70. Sciarria TP, Tenca A, D’Epifanio A, Mecheri B, Merlino G, Barbato M, Borin S, Licoccia S, Garavaglia V, Adani F (2013) Using olive mill wastewater to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell. Biores Technol 147:246–253CrossRefGoogle Scholar
  71. Sciarria TP, Merlino G, Scaglia B, D’Epifanio A, Mecheri B, Borin S, Licoccia S, Adani F (2015) Electricity generation using white and red wine lees in air cathode microbial fuel cells. J Power Sources 274:393–399CrossRefGoogle Scholar
  72. Singh A, Sevda S, Abu Reesh IM, Vanbroekhoven K, Rathore D, Pant D (2015) Biohydrogen production from lignocellulosic biomass: technology and sustainability. Energies 8(11):13062–13080CrossRefGoogle Scholar
  73. Tao Y, Chen Y, Wu Y, He Y, Zhou Z (2007) High hydrogen yield from a two-step process of dark-and photo-fermentation of sucrose. Int J Hydrogen Energy 32(2):200–206CrossRefGoogle Scholar
  74. Uyar B, Eroglu I, Yücel M, Gündüz U (2009) Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluents. Int J Hydrogen Energy 34(10):4517–4523CrossRefGoogle Scholar
  75. Velasquez-Orta SB, Curtis TP, Logan BE (2009) Energy from algae using microbial fuel cells. Biotechnol Bioeng 103(6):1068–1076CrossRefGoogle Scholar
  76. Virdis B, Rabaey K, Rozendal RA, Yuan Z, Keller J (2010) Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Res 44(9):2970–2980CrossRefGoogle Scholar
  77. Von Sperling M, Chernicharo CAL, Soares AME, Zerbini AM (2002) Coliform and helminth eggs removal in a combined UASB reactor–baffled pond system in Brazil: performance evaluation and mathematical modelling. Water Sci Technol 45(10):237–242CrossRefGoogle Scholar
  78. Wang A, Sun D, Cao G, Wang H, Ren N, Wu WM, Logan BE (2011) Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Biores Technol 102(5):4137–4143CrossRefGoogle Scholar
  79. Wett B, Buchauer K (2003) Comparison of aerobic and anaerobic technologies for domestic wastewater treatment based on case studies in Latin America. In: Proceedings of Seminario Problemas y Soluciones Ambientales, Aguas Residuales y Residuos Solidos, Medellin-Bogota-QuitoGoogle Scholar
  80. Winfield J, Ieropoulos I, Greenman J (2012) Investigating a cascade of seven hydraulically connected microbial fuel cells. Bioresour Technol 110(245–50):447.  https://doi.org/10.1016/j.biortech.2012.01.095 CrossRefGoogle Scholar
  81. Yazdi H, Alzate-Gaviria L, Ren ZJ (2015) Pluggable microbial fuel cell stacks for septic wastewater treatment and electricity production. Biores Technol 180:258–263CrossRefGoogle Scholar
  82. Yuan H, He Z (2015) Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: a review. Biores Technol 195:202–209CrossRefGoogle Scholar
  83. Zamalloa C, Arends JB, Boon N, Verstraete W (2013) Performance of a lab-scale bio-electrochemical assisted septic tank for the anaerobic treatment of black water. New Biotechnol 30(5):573–580CrossRefGoogle Scholar
  84. Zhang F, Brastad KS, He Z (2011) Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation. Environ Sci Technol 45(15):6690–6696CrossRefGoogle Scholar
  85. Zhang F, Ge Z, Grimaud J, Hurst J, He Z (2013) In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant. Biores Technol 136:316–321CrossRefGoogle Scholar
  86. Zong W, Yu R, Zhang P, Fan M, Zhou Z (2009) Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation. Biomass Bioenerg 33(10):1458–1463CrossRefGoogle Scholar
  87. Zuo Z, Wu S, Qi X, Dong R (2015) Performance enhancement of leaf vegetable waste in two-stage anaerobic systems under high organic loading rate: role of recirculation and hydraulic retention time. Appl Energy 147:279–286CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringMississippi State UniversityMississippi StateUSA

Personalised recommendations