Clean Technologies and Environmental Policy

, Volume 20, Issue 5, pp 1087–1095 | Cite as

Steel slag and iron ore tailings to produce solid brick

  • Suzy Magaly Alves Cabral de Freitas
  • Leila Nobrega Sousa
  • Pollyana Diniz
  • Máximo Eleotério Martins
  • Paulo Santos Assis
Original Paper
  • 59 Downloads

Abstract

The main goals of this work were to verify the potential of reuse of steel slag and iron ore tailings as secondary raw materials to produce solid brick and to evaluate whether this application can consume the amount of slag generated in Brazil. The feasibility of this application was verified through a comparative study. The mechanical behavior of concrete artifacts and pressed bricks made from residues was compared with others described in the literature. The residues were initially characterized using chemical and granulometric analysis. The bricks were produced by mixing different compositions of the residues with the addition of cement in the contents of 0 and 5%. The bricks were pressed in a manual mechanical press and sent to curing. The values of flexural strength of the bricks were higher than 2.0 MPa, and the average weight of the bricks was like those found in the ecological bricks. The simulation with the construction of houses showed that the proposed application can consume the amount of slag generated in Brazil. The generation of the income from carbon credits associated with CO2 reduction is an incentive to implement environmental management tools in Quadrilátero Ferrífero territory, specifically, industrial symbiosis and the carbon market.

Keywords

Steel slag Iron ore tailings Solid brick Low carbon Construction 

Notes

Acknowledgements

This study had the support of the Coordenação de Apoio de Pessoal de Nível Superior (Higher Education Staff Improvement Coordination—CAPES), of the Rede Temática de Engenharia de Materiais (Thematic Network of Materials Engineering—REDEMAT) and of the Federal University of Ouro Preto (UFOP).

References

  1. ABNT Brazilian Association of Technical Standards (2004) NBR 10004—Solid Waste-Classification. BrazilGoogle Scholar
  2. ABNT Brazilian Association of Technical Standards (2013) NBR 10833—Fabrication of Solid Cement Brick with the Use of Manual or Hydraulic Press—ProceduresGoogle Scholar
  3. Ammenberg J, Baas L, Eklund M, Feiz R, Helgstrand A, Marshall R (2015) Improving the CO2 performance of cement, part III: the relevance of industrial symbiosis and how to measure its impact. J Clean Prod 98:145–155.  https://doi.org/10.1016/j.jclepro.2014.01.086 CrossRefGoogle Scholar
  4. Andrade CF, Silva CM, Oliveira FDC (2014) Gestão ambiental em saneamento: uma revisão das alternativas para tratamento e disposição do lodo de eta e seus impactos na qualidade das águas. In: V Congresso Brasileiro de Gestão Ambiental, Belo Horizonte, pp 1–11Google Scholar
  5. ANEPAC Associação Nacional das Entidades de Produtores de Agregados para Construção Civil (2012) Revista Areia e Brita, São PauloGoogle Scholar
  6. Assis PS, Ferreira AL, Freitas SMAC, et al (2017) Measurement of carbon dioxide emissions in ecological bricks produced with LD steel slag and concentrate waste of iron ore. In: AISTech conference proceedings, pp 372–359Google Scholar
  7. ASTM American Society for Testing and Materials (1991) C1161-90—Standard Test Method for flexural strength of advanced ceramics at ambient temperatureGoogle Scholar
  8. Belhadj E, Diliberto C, Lecomte A (2012) Characterization and activation of basic oxygen furnace slag. Cem Concr Compos 34:34–40.  https://doi.org/10.1016/j.cemconcomp.2011.08.012 CrossRefGoogle Scholar
  9. Brasil (2010) Lei no. 12.305, de 2 de agosto de 2010. Institui a Política Nacional de Resíduos Sólidos; altera a Lei no. 9.605, de 12 de fevereiro de 1998; e dá outras providências. BrasilGoogle Scholar
  10. Brazilian Association of Technical Standards—ABNT. NBR NM 13 (2004). Portland cement—chemical analysis—determination of the free calcium oxide by ethylenglycol. Rio de Janeiro, BrazilGoogle Scholar
  11. CEBDS Conselho Empresarial Brasileiro para o Desenvolvimento Sustentável (2016) Precificação de Carbono: o que o setor empresarial precisa saber para se posicionar. http://cebds.org/publicacoes/precificacao-de-carbono-o-que-o-setor-empresarial-precisa-saber-para-se-posicionar/#.WfcWmlRSzIU. Accessed 30 Oct 2017
  12. Costa I, Massard G, Agarwal A (2010) Waste management policies for industrial symbiosis development: case studies in European countries. J Clean Prod 18:815–822.  https://doi.org/10.1016/j.jclepro.2009.12.019 CrossRefGoogle Scholar
  13. Da Silva MJ, Mendes JC, Brigolini GJS et al (2016) Feasibility study of steel slag aggregates in precast concrete pavers. Mater J.  https://doi.org/10.14359/51688986 Google Scholar
  14. DNPM (2016) Departamento Nacional de Produção Mineral, Minério de Ferro. https://sistemas.dnpm.gov.br/publicacao/mostra_imagem.asp?IDBancoArquivoArquivo=3974. Accessed 19 May 2017
  15. Dong L, Zhang H, Fujita T et al (2013) Environmental and economic gains of industrial symbiosis for Chinese iron/steel industry: Kawasaki’s experience and practice in Liuzhou and Jinan. J Clean Prod 59:226–238.  https://doi.org/10.1016/j.jclepro.2013.06.048 CrossRefGoogle Scholar
  16. Engströma F, Adolfssonb D, Samuelssona C, Sandströma Å, Björkmana B (2013) A study of the solubility of pure slag minerals. Miner Eng 41:46–52.  https://doi.org/10.1016/j.mineng.2012.10.004 CrossRefGoogle Scholar
  17. Espuelas S, Omer J, Marcelino S, Echeverría AM, Seco A (2017) Magnesium oxide as alternative binder for unfired clay bricks manufacturing. Appl Clay Sci 146:23–26.  https://doi.org/10.1016/j.clay.2017.05.034 CrossRefGoogle Scholar
  18. FEAM - Fundação Estadual do Meio Ambiente. Inventário de Resíduos Sólidos Minerários (2016) http://www.feam.br/images/stories/2017/RESIDUOS/Inventario_Res%C3%ADduos_S%C3%B3lidos_Miner%C3%A1rios_2016_Rev1_COM_FICHA.pdf. Accessed 04 Oct 2017
  19. Ferreira VJ, Sáez-De-Guinoa AV, García-Armingol T et al (2016) Evaluation of the steel slag incorporation as coarse aggregate for road construction: technical requirements and environmental impact assessment. J Clean Prod 130:175–186.  https://doi.org/10.1016/j.jclepro.2015.08.094 CrossRefGoogle Scholar
  20. FIEMG—Federação das Indústrias do Estado de Minas Gerais. Gestão de Resíduos Sólidos. http://www.fiemg.org.br/Default.aspx?tabid=10986. Accessed 8 Oct 2017
  21. Galán-Arboledas R, Álvarez de Diego J, Dondi M, Bueno S (2017) Energy, environmental and technical assessment for the incorporation of EAF stainless steel slag in ceramic building materials. J Clean Prod 142:1778–1788.  https://doi.org/10.1016/j.jclepro.2016.11.110 CrossRefGoogle Scholar
  22. Gibbs D, Deutz P (2007) Reflections on implementing industrial ecology through eco-industrial park development. J Clean Prod 15:1683–1695.  https://doi.org/10.1016/j.jclepro.2007.02.003 CrossRefGoogle Scholar
  23. Gomes MA (2009) Caracterização tecnológica no aproveitamento do rejeito de minério de ferro. Universidade Federal de Ouro PretoGoogle Scholar
  24. Guo X, Shi H (2013) Modification of steel slag powder by mineral admixture and chemical activators to utilize in cement-based materials. Mater Struct 46:1265–1273.  https://doi.org/10.1617/s11527-012-9970-7 CrossRefGoogle Scholar
  25. Guo X, Shi H, Wu K (2014) Effects of steel slag powder on workability and durability of concrete. J Wuhan Univ Technol Mater Sci Ed 29:733–739.  https://doi.org/10.1007/s11595-014-0988-2 CrossRefGoogle Scholar
  26. IABr (2016) Instituto Aço Brasil—Relatório de Sustentabilidade 2016—dados 2014/2015. http://www.acobrasil.org.br/sustentabilidade/. Accessed 2 Aug 2017
  27. IPCC (2014) Climate change 2050: the scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental panel on climate changeGoogle Scholar
  28. IPEA—Instituto de pesquisa econômica aplicada. PNRS, Brazil, 2010Google Scholar
  29. ISO International Organization for Standardization (2012) ISO 13006—Ceramic tiles—definitions, classification, characteristics and markingGoogle Scholar
  30. Junior LABP (2012) Fabricação de cimento Portland contendo mistura de escória de aciaria LD e resíduo de granito. Instituto Federal Do Espírito SantoGoogle Scholar
  31. Li Y, Liu Y, Gong X et al (2016) Environmental impact analysis of blast furnace slag applied to ordinary Portland cement production. J Clean Prod 120:221–230.  https://doi.org/10.1016/j.jclepro.2015.12.071 CrossRefGoogle Scholar
  32. Liu S, Yan P (2008) Influence of limestone power on filling effect of cement paste and pore structure of sand grout. J Chin Ceram Soc 36:69–77Google Scholar
  33. Lombardi DR, Laybourn P (2012) Redefining industrial symbiosis. J Ind Ecol 16:28–37.  https://doi.org/10.1111/j.1530-9290.2011.00444.x CrossRefGoogle Scholar
  34. Maia LC, Gonçalves TS, Carvalho CF (2017) Reaproveitamento de resíduos da mineração de ferro e da siderurgia para obtenção de sais de ferro: sulfato e/ou cloreto. In: Congresso ABES FENASAN 2017. São Paulo, p 19Google Scholar
  35. Mauthoor S (2017) Uncovering industrial symbiosis potentials in a small island developing state: the case study of Mauritius. J Clean Prod 147:506–513.  https://doi.org/10.1016/j.jclepro.2017.01.138 CrossRefGoogle Scholar
  36. MCT—Ministério da Ciência e Tecnologia. Status dos projetos do Mecanismo de Desenvolvimento Limpo (MDL) no Brasil. 2016. http://www.mct.gov.br/upd_blob/0238/238910.pdf. Accessed 8 Oct 2017
  37. MMA Ministério do Meio Ambiente (2017) Do conceito de P + L para o conceito de PCS. http://www.mma.gov.br/responsabilidade-socioambiental/producao-e-consumo-sustentavel/do-conceito-de-pl-para-o-conceito-de-pcs. Accessed 30 Oct 2017
  38. MME Ministério de Minas e Energia (2009) Secretaria de geologia, mineração e transformação mineral—SGM. http://www.mme.gov.br/documents/1138775/1256650/P22_RT31_Perfil_de_areia_para_construxo_civil.pdf/9745127c-6fdc-4b9f-9eda-13fa0146d27d. Accessed 04 Oct 2017
  39. Naganathan S, Mohamed AYO, Mustapha KN (2015) Performance of bricks made using fly ash and bottom ash. Constr Build Mater 96:576–580.  https://doi.org/10.1016/j.conbuildmat.2015.08.068 CrossRefGoogle Scholar
  40. Netinger I, Bjegović D, Vrhovac G (2011) Utilisation of steel slag as an aggregate in concrete. Mater Struct 44:1565–1575.  https://doi.org/10.1617/s11527-011-9719-8 CrossRefGoogle Scholar
  41. Oliveira LS, Pacca SA, John VM (2016) Variability in the life cycle of concrete block CO2 emissions and cumulative energy demand in the Brazilian Market. Constr Build Mater 114:588–594.  https://doi.org/10.1016/j.conbuildmat.2016.03.134 CrossRefGoogle Scholar
  42. Pereira GR, Sant’anna FSP (2012) Uma análise da produção mais limpa no Brasil. Rev. Bras. Ciências AmbientGoogle Scholar
  43. Quijorna N, de Pedro M, Romero M, Andrés A (2014) Characterisation of the sintering behaviour of Waelz slag from electric arc furnace (EAF) dust recycling for use in the clay ceramics industry. J Environ Manag 132:278–286.  https://doi.org/10.1016/j.jenvman.2013.11.012 CrossRefGoogle Scholar
  44. Sezer Gİ, Gülderen M (2015) Usage of steel slag in concrete as fine and/or coarse aggregate. IJEMS 22:339–344Google Scholar
  45. Silva APM, Viana JP, Cavalcante ALB (2011) Resíduos Sólidos da Atividade de Mineração, IPEAGoogle Scholar
  46. Silva FL, Araújo FGS, Teixeira MP, Gomes RC, von Krüger FL (2014) Study of the recovery and recycling of tailings from the concentration of iron ore for the production of ceramic. Ceram Int 40:16085–16089.  https://doi.org/10.1016/j.ceramint.2014.07.145 CrossRefGoogle Scholar
  47. Souza DM, Lafontaine M, Charron-Doucet F et al (2015) Comparative life cycle assessment of ceramic versus concrete roof tiles in the Brazilian context. J Clean Prod 89:165–173.  https://doi.org/10.1016/j.jclepro.2014.11.029 CrossRefGoogle Scholar
  48. Tanimoto AH (2004) Proposta de simbiose industrial para minimizar os resíduos sólidos no Pólo Petroquímico de Camaçari. Universidade Federal da BahiaGoogle Scholar
  49. Thiesen MP (2010) Identificação de oportunidades de mecanismos de desenvolvimento limpo para o mercado de crédito de carbono nas cooperativas agropecuárias paranaenses. Universidade do ParanáGoogle Scholar
  50. Tisserant A, Pauliuk S, Merciai S et al (2017) Solid waste and the circular economy: a global analysis of waste treatment and waste footprints. J Ind Ecol.  https://doi.org/10.1111/jiec.12562 Google Scholar
  51. Toffolo RVM, Filho JB de S, Batista JO dos S et al (2014) Technical feasibility of paving concrete elements produced with tailings dam of iron ore como solução final dos resíduos sólidos oriundos. In: Anais do 56 Congresso Brasileiro do Concreto, pp 1–14Google Scholar
  52. Wimmer G, Wulfert H, Fleischanderl A, et al (2014) BOF converter slag valorization. In: AISTech iron steel technology conference exhibit, pp 297–303Google Scholar
  53. World Bank (2016) State and trends of carbon pricing. http://documents.worldbank.org/curated/en/598811476464765822/State-and-trends-of-carbon-pricing. Accessed 28 Oct 2017
  54. Yellishetty M, Karpe V, Reddy EH et al (2008) Reuse of iron ore mineral wastes in civil engineering constructions: a case study. Resour Conserv Recycl 52:1283–1289.  https://doi.org/10.1016/j.resconrec.2008.07.007 CrossRefGoogle Scholar
  55. Yuan Z, Shi L (2009) Improving enterprise competitive advantage with industrial symbiosis: case study of a smeltery in China. J Clean Prod 17:1295–1302.  https://doi.org/10.1016/j.jclepro.2009.03.016 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Rede Temática em Engenharia de Materiais - REDEMATUniversidade Federal de Ouro PretoOuro PretoBrazil
  2. 2.Departamento de ProduçãoUniversidade Federal de Ouro Preto, UFOPOuro PretoBrazil

Personalised recommendations