Skip to main content

Advertisement

Log in

Optimization and economic analysis of amine-based acid gas capture unit using monoethanolamine/methyl diethanolamine

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

In this work, process optimization and economic analysis of amine-based acid gas capture unit using monoethanolamine (MEA) and methyl diethanolamine (MDEA) blends have been carried out using Aspen Plus (version 8.8). Amine-based CO2 absorption technology is proposed in this study to be retrofitted into the power plant due to its high selectivity and high absorption capacity. However, the associated energy penalty to such technology is relatively high and energy intensive and exhibits process dynamic which necessitates more research to ensure a significant reduction in carbon capture costs achievable. The present work tackles these limitations by analysing the steady-state simulation via Aspen Plus (version 8.8) in determining the technical and economic parameters that make CO2 capture system more efficient, economic and less energy intensive. Optimization of the process was aimed towards minimal reboiler heat duty and maximum CO2 removal efficiency in having the least economic impact of the process. The optimal operating conditions resulted from this study were found to be at 30 °C (1 atm.) for the absorber and at 120 °C (2 atm.) for stripper. The methyl diethanolamine (MDEA) to monoethanolamine (MEA) ratio is fixed at 3:7 with 40 wt% of amine in the solvent. The results showed an increase of 5.5% in acid gas removal rate which resulted in 91.27% of CO2 removal rate as compared to the optimized parameters obtained by Tenaga Nasional Berhad Research’s (TNBR) pilot plant case study situated in Kajang, Selangor. A 300% reduction in energy penalty and heat duty cost is achieved when MEA/MDEA mixture is used instead of MEA alone, resulting in a more economic acid gas removal process with optimum operation. The results showed that this optimization successfully achieved significant energy saving whilst minimizing greenhouse gas emission bringing a significant beneficial environmental and economic impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MDEA:

Methyl diethanolamine

MEA:

Monoethanolamine

TNBR:

Tenaga Nasional Berhad Research

CCUS:

Carbon capture, utilization and storage

L/D:

Length to diameter ratio

References

  • Abu-Khader Mazen M (2006) Recent progress in CO2 capture/sequestration: a review. Energy Sources Part A Recovery Util Environ Eff 28(14):1261–1279. doi:10.1080/009083190933825

    Article  CAS  Google Scholar 

  • Alptekin G, Jayaraman A, Copeland R, Dietz S (2009) A low cost high capacity regenerable sorbent for post combustion CO2 capture. AIChE annual meeting, 4 November 2013, San Francisco, USA

  • Amann JM, Descamps C, Kanniche M, Bouallou C (2007) Modeling of the CO2 capture in post-combustion. Sci Study Res 8(1):77–90

    CAS  Google Scholar 

  • Aroonwilas A, Tontiwachwuthikul P (1997) High-efficiency structured packing for CO2 separation using 2-amino-2-methyl- 1-propanol (AMP). Sep Purif Technol 12:67–79

    Article  CAS  Google Scholar 

  • Aroonwilas A, Veawab A (2009) Integration of CO2 capture unit using blended MEA–AMP solution into coal-fired power plants. Energy Procedia 1:4315–4321

    Article  CAS  Google Scholar 

  • Aspen Technology, Inc. (2000) Aspen Plus user guide. Aspen Technology, Inc. (Version 10). Cambridge

  • AspenTech (2008–2014) Rate-based model of the CO2 capture process by MDEA using Aspen Plus. Aspen Technology, Inc., 200 Wheeler Road, Burlington, MA 01803-5501, USA

  • Austgen DM, Rochelle GT, Peng X, Chen CC (1989) Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems using the electrolyte-NRTL equation. Ind Eng Chem Res 28:1060–1073

    Article  CAS  Google Scholar 

  • Bandyopadhyay A (2011) Amine versus ammonia absorption of CO2 as a measure of reducing GHG emission: a critical analysis. Clean Technol Environ Policy 13(2):269–294

    Article  CAS  Google Scholar 

  • Ben-Mansour R, Habib MA, Bamidele OE, Basha M, Qasem NAA, Peedikakkal A, Laoui T, Ali M (2016) Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations—a review. Appl Energy 161:225–255

    Article  CAS  Google Scholar 

  • Bernhardsen IM, Knuutila HK (2017) A review of potential amine solvents for CO2 absorption process: absorption capacity, cyclic capacity and pKa. Int J Greenhouse Gas Control 61:27–48

    Article  CAS  Google Scholar 

  • Booth NJ (2005) Secondment to the International Test Centre for CO2 Capture (ITC), University of Regina, Canada. January–March 2005 Report No. COAL R303 DTI/Pub URN 06/798

  • Chen C-C, Boston JF, Britt HI, Evans LB (1979) Extension and application of the Pitzer equation for vapor-liquid equilibrium of aqueous electrolyte systems with molecular solutes. AIChE J 25:820–831

    Article  CAS  Google Scholar 

  • Chunbo Y, Guangwen C, Quan Y (2012) Process characteristics of CO2 absorption by aqueous monoethanolamine in a microchannel reactor. Chin J Chem Eng 20(1):111–119

    Article  Google Scholar 

  • Dawodu OF, Meisen A (1996) Effects of composition on the performance of alkanolamine blends for gas sweetening. Chem Eng Commun 144(1):103–112

    Article  CAS  Google Scholar 

  • Dyment J, Watanasiri S (2015) Acid gas cleaning using amine solvents: validation with experimental and plant data. Aspen Technology, US

    Google Scholar 

  • EC (Energy Commision) (2016) Year in review—2015, Peninsular Malaysia Electricity Supply Industry Outlook 2016, Suruhanjaya Tenaga (Energy Commision), Putrajaya, Malaysia

  • Goto K, Yogo K, Higashii T (2013) A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture. Appl Energy 111:710–720

    Article  CAS  Google Scholar 

  • Gutierrez JP, Benitez LA, Ale Ruiz EL, Erdmann E (2016) A sensitivity analysis and a comparison of two simulators performance for the process of natural gas sweetening. J Nat Gas Sci Eng 31:800–807

    Article  CAS  Google Scholar 

  • Haghtalab A, Tafti MD (2007) Electrolyte UNIQUAC-NRF model to study the solubility of acid gases in alkanolamines. Ind Eng Chem Res 46(18):6053–6060

    Article  CAS  Google Scholar 

  • Harun N, Nittaya T, Douglas PL, Croiset E, Ricardez-Sandoval LA (2012) Dynamic simulation of MEA absorption process for CO2 capture from power plants. Int J Greenhouse Gas Control 10:295–309

    Article  CAS  Google Scholar 

  • Hook RJ (1997) An investigation of some sterically hindered amines as potential carbon dioxide scrubbing compounds. Ind Eng Chem Res 36(5):1779–1790

    Article  CAS  Google Scholar 

  • Hüser N, Schmitz O, Kenig EY (2017) A comparative study of different amine-based solvents for CO2-capture using the rate-based approach. Chem Eng Sci 157:221–231

    Article  Google Scholar 

  • Huttenhuis P, Agrawal N, Hogendoorn J, Versteeg G (2007) Gas solubility of H2S and CO2 in aqueous solutions of N-methyldiethanolamine. J Petrol Sci Eng 55:122–134

    Article  CAS  Google Scholar 

  • Jou FY, Mather AE, Otto FD (1995) The solubility of CO2 in a 30 mass percent monoethanolamine solution. Can J Chem Eng 73:140–147

    Article  CAS  Google Scholar 

  • Kaplan S (2011) Power plants: characteristics and costs. DIANE Publishing, Collingdale

    Google Scholar 

  • Kidnay AJ, Parrish WR, McCartney DG (2011) Fundamentals of natural gas processing, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39:426–443

    Article  CAS  Google Scholar 

  • Luo X, Fu K, Yang Z, Gao H, Rongwong W, Liang Z, Tontiwachwuthikul P (2015) Experimental studies of reboiler heat duty for CO2 desorption from triethylenetetramine (TETA) and triethylenetetramine (TETA) + N-methyldiethanolamine (MDEA). Ind Eng Chem Res 54(34):8554–8560

    Article  CAS  Google Scholar 

  • Männistö M (2015) New Lewis-cell type measurement apparatus setup and validation long with new acid gas absorption measurement into phase change solvents. School of Chemical Technology, Aalto

    Google Scholar 

  • Mock B, Evans LB, Chen C-C (1986) Thermodynamic representation of phase equilibria of mixed-solvent electrolyte systems. AIChE J 32(10):1655–1664

    Article  CAS  Google Scholar 

  • Mudhasakula S, Kua HM, Douglas PL (2013) A simulation model of a CO2 absorption process with methyldiethanolamine solvent and piperazine as an activator. Int J Greenhouse Gas Control 15:134–141

    Article  Google Scholar 

  • Nittaya T, Douglas PL, Croiset E, Ricardez-Sandoval LA (2014) Dynamic modelling and controllability studies of a commercial-scale MEA absorption processes for CO2 capture from coal-fired power plant. Energy Procedia 63:1595–1600

    Article  CAS  Google Scholar 

  • Pani F, Gaunand A, Richon D, Cadours R, Bouallou C (1997) Absorption of H2S by an aqueous methyldiethanolamine solution at 296 and 343 K. J Chem Eng Data 42:865–870

    Article  CAS  Google Scholar 

  • Rani NHA, Muda N, Shukor SRA (2015) Syngas clean up system using amine for gas turbine applications. In: 5th international conference on environment 2015 (ICENV 2015), 18–19 August 2015 Penang, Malaysia, pp 577–584

  • Sartori G, Savage DW (1983) Sterically hindered amines for carbon dioxide removal from gases. Ind Eng Chem Fundam 22(2):239–249

    Article  CAS  Google Scholar 

  • Slagle JC (2013) Improve your gas plant’s performance in the middle east part 1: the amine plant. Arab States, Gas Processors Association–Gulf Cooperation Council 21st Technical Conference, 8 May 2013, Doha, Qatar, pp 1–17

  • Sreedhara I, Nahara T, Venugopal A, Srinivasc B (2017) Carbon capture by absorption—path covered and ahead. Renew Sustain Energy Rev 76:1080–1107

    Article  Google Scholar 

  • Stec M, Tatarczuk A, Więcław-Solny L, Krótki A, Spietz T, Wilk A, Śpiewak D (2016) Demonstration of a post-combustion carbon capture pilot plant using amine-based solvents at the Łaziska Power Plant in Poland. Clean Technol Environ Policy 18:151–160

    Article  CAS  Google Scholar 

  • Stéphenne K (2014) Start-Up of world’s first commercial post-combustion coal fired CCS project: contribution of Shell Cansolv to SaskPower Boundary Dam ICCS Project. Energy Procedia 63:6106–6110

    Article  Google Scholar 

  • Thorbjornsson A, Wachtmeister H, Wang JL, Hook M (2015) Carbon capture and coal consumption: implications of energy penalties and large scale deployment. Energy Strategy Rev 7:18–28

    Article  Google Scholar 

  • Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C (2011) Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des 89:1609–1624

    Article  CAS  Google Scholar 

  • World Coal Association (2016) Coal and electricity. www.worldcoal.org/coal/uses-coal/coal-electricity. Accessed 20 Aug 2016

  • Yeh JT, Pennline HW, Resnik KP (2001) Study of CO2 absorption and desorption in a packed column. Energy Fuels 15:274–278

    Article  CAS  Google Scholar 

  • Yu CH, Tan CS (2013) Mixed Alkanolamines with Low Regeneration Energy for CO2 Capture in a Rotating Packed Bed. Energy Procedia 37:455–460

    Article  CAS  Google Scholar 

  • Yu CH, Huang CH, Tan CS (2012) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 12:745–769

    CAS  Google Scholar 

  • Zhang R, Luo X, Yang Q, Cao F, Chen S, Liang Z (2015) Impact of the inter- and intramolecular tertiary amino group on the primary amino group in the CO2 absorption process. Ind Eng Chem Res 55:7210–7217

    Article  Google Scholar 

  • Zhang R, Liang Z, Liu H, Rongwong W, Luo X, Idem R, Yang Q (2016) Study of formation of bicarbonate ions in CO2-loaded aqueous single 1DMA2P and MDEA tertiary amines and blended MEA–1DMA2P and MEA–MDEA amines for low heat of regeneration. Ind Eng Chem Res 55:3710–3717

    Article  CAS  Google Scholar 

  • Zhu B, Liu Q, Zhou Q, Yang J, Ding J, Wen J (2014) Absorption of carbon dioxide from flue gas using blended amine solutions. Chem Eng Technol 37(4):635–642

    Article  CAS  Google Scholar 

  • Ziaii S, Rochelle GT, Edgar TF (2009) Modeling to minimize energy use for CO2 capture in power plants by monoethanolamine. Ind Eng Chem Res 48:6105–6111

    Article  CAS  Google Scholar 

  • Zurlo J (2013) Optimization of amine units and improve refinery profitability. Gulf Publishing Company, Houston

    Google Scholar 

Download references

Acknowledgements

This study has been supported by Fundamental Research Grants Scheme (FRGS-PJKIMIA/6071255) and special thanks to TNBR for the shared data and technical expertise which had made this research a success.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syamsul Rizal Abd. Shukor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Law, L.C., Yusoff Azudin, N. & Abd. Shukor, S.R. Optimization and economic analysis of amine-based acid gas capture unit using monoethanolamine/methyl diethanolamine. Clean Techn Environ Policy 20, 451–461 (2018). https://doi.org/10.1007/s10098-017-1430-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-017-1430-1

Keywords

Navigation