Integrated biodiesel facilities: review of glycerol-based production of fuels and chemicals

  • Alberto Almena
  • Laura Bueno
  • Marcos Díez
  • Mariano Martín
Original Paper


Glycerol as raw material for further use within biorefineries has been evaluated by reviewing and comparing several processes, mostly from the literature but also a few developed for this work. The evaluation of these processes for transforming glycerol into fuels and chemicals includes their economics and the influence of main process design parameters. The possibility of reusing those chemicals within the biorefinery complex provides further integration possibilities. Various chemical complexes have been described from the literature, and a new process to obtain acrolein is developed. On the one hand, high added-value products allow a biodiesel production cost rather competitive. However, this reduces the integration opportunities and even the fuel yield from oil. On the other hand, for biorefineries to be attractive, a combination of yield and economics needs to be achieved. It looks like a distributed production is so far preferable, based on the current studies. But a more comprehensive supply chain study should be developed to evaluate and integrate biodiesel production plants and processes in a territory.


Biofuels Biodiesel Glycerol Process integration 



The authors also thank the Salamanca Research for software licences and the project DPI2015-67341-C2-1-R.

Supplementary material

10098_2017_1424_MOESM1_ESM.docx (41 kb)
Supplementary material 1 (DOCX 40 kb)


  1. Adhikari S, Fernando S, Gwaltney SR, Filip To SD, Bricka RM, Steele PH, Haryanto A (2007) A thermodynamic analysis of hydrogen production by steam reforming of glycerol. Int J Hydrogen Energy 32:2875–2880CrossRefGoogle Scholar
  2. Akiyama M, Sato S, Takahashi R, Inui K, Yokota M (2009) Dehydration-hydrogenation of glycerol intro 1,2- propanediol at ambient hydrogen pressure. Appl Cat A 371:60–65CrossRefGoogle Scholar
  3. Global Trade. Acrolein price at industrial scale. [online] Last accessed 30/03/2017. Link:
  4. Almena A, Martín M (2016) Techno-economic analysis of the production of epiclorhidrin from glycerol. Ind Eng Chem Res 55(12):3226–3238CrossRefGoogle Scholar
  5. Arntz D, Fischer A, Höpp M, Jacobi S, Sauer J, Ohara T, Sato T, Shimizu N, Schwind H (2007) Acrolein and methacrolein Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim, pp 1–19Google Scholar
  6. Asada C, Basnet S, Otsuka M, Sasaki C, Nakamura Y (2015) Epoxy resin synthesis using low molecular weight lignin separated from various lignocellulosic materials. Int J Biol Macromol 74:413–419CrossRefGoogle Scholar
  7. Beauprez JJ, De Mey M, Soetaert WK (2010) Microbial succinic acid production: natural versus metabolic engineered producers. Process Biochem 45:1103–1114CrossRefGoogle Scholar
  8. Behr A, Obendorf L (2001) Process development for acid-catalysed etherification of glycerol with isobutene to form glycerol tertiary butyl ethers. Chem Ing Tech 73:1463–1467CrossRefGoogle Scholar
  9. Behr A, Obendorf L (2002) Development of a process for the acid- catalyzed etherification of glycerine and isobutene forming glycerine tertiary butyl ethers. Eng Life Sci 7(2):185–189CrossRefGoogle Scholar
  10. Bell BM, Briggs JR, Campbell RM, Chambers SM, Gaarenstroom PD, Hippler JG, Hook BD, Kearns K, Kenney JM, Kruper WJ, Schreck DJ, Theriault CN, Wolfe CP (2008) Glycerin as a renewable feedstock for epichlorohydrin production: the gte process. CLEAN Soil Air Water 36(8):657–661CrossRefGoogle Scholar
  11. Bormann EJ, Roth M (1999) The production of polyhydroxybutyrate by Methylobacterium rhodesianum and Ralstonia eutropha in media containing glycerol and casein hydrosates. Biotechnol Lett 21:1059–1063CrossRefGoogle Scholar
  12. Bradin DS (1996) Biodiesel fuel. United States patent. Inventor US005578090A. 11/26/1996Google Scholar
  13. Brioude MM, Guimarães DH, Fiúza RP, Prado LASA, Boaventura JS, José NM (2007) Studies of aliphatic polyesters from glycerol, by-product of biodiesel, and adipic acid. Mater Res 10:335–339CrossRefGoogle Scholar
  14. Bueno L, Toro CA, Martín M (2015) Techno-economic evaluation of the production of added value polymers from glycerol. Chem Eng Res Des 93:432–440CrossRefGoogle Scholar
  15. Bui L, Chakrabarti R, Bhan A (2016) Mechanistic origins of unselective oxidation products in the conversion of propylene to acrolein on Bi2Mo3O12. ACS Catal 6(10):6567–6580CrossRefGoogle Scholar
  16. Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR (2009) Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44(5):509–515CrossRefGoogle Scholar
  17. Chai SH, Wang HP, Liang Y, Xu BQ (2007) Sustainable production of acrolein: gas-phase dehydration of glycerol over Nb2O5 catalyst. J Catal 250:342–349CrossRefGoogle Scholar
  18. Cheng JK, Lee C-L, Jhuang Y-T, Ward JD, Chien L (2011) Design and control of the glycerol tertiary butyl ethers process for the utilization of a renewable resource. Ind Eng Chem Res 50:12706–12716CrossRefGoogle Scholar
  19. Choi J-I, Lee S-Y (1997) Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioprocess Biosyst Eng 17:335–342CrossRefGoogle Scholar
  20. Cimini D, Argenzio O, D’Ambrosio S, Lama L, Finore I, Finamore R, Pepe O, Faraco V, Schiraldi C (2016) Production of succinic acid from Basfia succiniciproducens up to the pilot scale from Arundo donax hydrolysate. Biores Technol 222:355–360CrossRefGoogle Scholar
  21. Corman A, Huber GW, Sauvanaud L, O’Connor P (2008) Biomass to chemicals: catalytic conversion of glycerol/water mixtures into acrolein, reaction network. J Catal 257:163–171CrossRefGoogle Scholar
  22. De la Cruz V, Hernández S, Martín M, Grossmann IE (2014) Integrated synthesis of Biodiesel, Bioethanol, Ibutene and glycerol ethers from algae. Ind Eng Chem Res 53(37):14397–14407CrossRefGoogle Scholar
  23. Deka H, Karak N (2009) Bio-based hyperbranched polyurethanes for surface coating applications. Prog Org Coat 66:192–198CrossRefGoogle Scholar
  24. Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia Coli: a new platform for metabolic engineering. Wiley, New YorkGoogle Scholar
  25. Dibenedetto A, Angelini A, Aresta M, Ethiraj J, Fragale C, Nocito F (2011) Converting wastes into added value products: from glycerol to glycerol carbonate, glycidol and epichlorohydrin using environmentally friendly synthetic routes. Tetrahedron 67:1308–1313CrossRefGoogle Scholar
  26. Douette AMD, Turn SQ, Wang W, Keffer VI (2007) Experimental investigation of hydrogen production from glycerin reforming. Energy Fuel 21:3499–3504CrossRefGoogle Scholar
  27. Esteban J, Ladero M, García-Ochoa F (2015) Kinetic modelling of the solventless synthesis of solketal with a sulphuric ion exchange resin. Chem Eng J 269:194–202CrossRefGoogle Scholar
  28. Fan Y, Cai Y, Li X, Yin H, Xia J (2017) Coking characteristics and deactivation mechanism of the HZSM-5 zeolite employed in the upgrading of biomass-derived vapors. J Ind Chem Eng 46:139–149CrossRefGoogle Scholar
  29. Feng J, Fu H, Wang J, Li R, Chen H, Li X (2008) Hydrogenolysis of glycerol to glycols over ruthenium catalyst: effect of support and catalyst reduction temperature. Catal Commun 9:1458–1464CrossRefGoogle Scholar
  30. Gandarias I, Arias PL, Agirrezabal-Telleria I (2016) Economic assessment for the production of 1,2-Propanediol from bioglycerol hydrogenolysis using molecular hydrogen or hydrogen donor molecules Environ. Progr Sustain Energy 35(2):447–454CrossRefGoogle Scholar
  31. Gargalo CL, Cheali P, Posada JA, Gernaey KV, Sin G (2016) Economic risk assessment of early stage designs for glycerol valorization in biorefinery concepts. Ind Eng Chem Res 55(24):6801–6814CrossRefGoogle Scholar
  32. Green SR, Whalen EA, Molokie E (1961) Dihydroxyacetone: production and uses. J Biochem Microbiol Technol Eng 3(4):351–355CrossRefGoogle Scholar
  33. Grothe E, Moo-Young M, Chisti Y (1999) Fermentation optimization for the production of poly(β-hydroxybutyric acid) microbial thermoplastic. Enzyme Microb Technol 25(1–2):132–141CrossRefGoogle Scholar
  34. Gupta VP (1995) ARCO Chem. Technology, L.P (1995). Glycerine ditertiary butyl ether preparation. United States Patent. Inventor. US005476971A. 12/19/1995Google Scholar
  35. Herselman J, Bradfield MFA, Vijayan U, Nicol W (2017) The effect of carbon dioxide availability on succinic acid production with biofilms of Actinobacillus succinogenes. Biochem Eng J 117:218–225CrossRefGoogle Scholar
  36. Hu S, Luo X, Wan C, Li Y (2012) Characterization of crude glycerol from biodiesel plants. J Agric Food Chem 60:5915–5921CrossRefGoogle Scholar
  37. Imachi M, Kuczkowski RL, Groves JT, Carwt NW (1983) The mechanism of propylene oxidation to acrolein over bismuth molybdate, copper oxide, and rhodium catalysts. J Catal 82:355–364CrossRefGoogle Scholar
  38. Jalinski TJ (2006) WO Patent 084048, Jalin TechnologiesGoogle Scholar
  39. Jamroz ME, Jarosz M, Witowska-Jarosz J, Bednarek E, Tecza W, Jamroz MH, Dobrowolski JC, Kijenski J (2007) Mono-, di-, and tri-tert-butyl ethers of glycerol A molecular spectroscopic study. Spectrochim Acta Part A 67:980–988CrossRefGoogle Scholar
  40. Jarvis GN, Moore ERB, Thiele JH (1997) Formate and ethanol are the major products of glycerol fermentation produced by a Klebsiella planticola strain isolated from red deer. J Appl Microbiol 83:166–174CrossRefGoogle Scholar
  41. Jensen TØ, Kvist T, Mikkelsen MJ, Christensen PV, Westermann P (2012) Fermentation of crude glycerol from biodiesel production by Clostridium pasteurianum. J Ind Microbiol Biotechnol 39:709–717CrossRefGoogle Scholar
  42. Ji P, Feng W, Chen B (2009) Production of ultrapure hydrogen from biomass gasification with air. Chem Eng Sci 64:582–592CrossRefGoogle Scholar
  43. Jung JY, Yun HS, Lee J, Oh MK (2011) Production of 1,2-propanediol from glycerol in Saccharomyces cerevisiae. J Microbiol Biotechnol 21(8):846–853CrossRefGoogle Scholar
  44. Karuppiah R, Peschel A, Grossmann IE, Martín M, Martinson W, Zullo L (2008) Energy optimization of an ethanol plant. AIChE J 54(6):1499–1525CrossRefGoogle Scholar
  45. Katrlík J, Vostiar I, Sefcovicová J, Tkác J, Mastihuba V, Valach M, Stefuca V, Gemeiner P (2007) A novel microbial biosensor based on cells of Gluconobacter oxydans for the selective determination of 1,3-propanediol in the presence of glycerol and its application to bioprocess monitoring. Anal Bioanal Chem 388(1):287–295CrossRefGoogle Scholar
  46. Khanna S, Srivastava AK (2005) Statistical media optimization studies for growth and PHB production by Ralstonia eutropha. Process Biochem 40(6):2173–2182CrossRefGoogle Scholar
  47. Kiatkittipong W, Intaracharoen P, Laosiripojana N, Chaisuk C, Praserthdam P, Assabumrungrat S (2011) Glycerol ethers synthesis from glycerol etherification with tert-butyl alcohol in reactive distillation. Comput Chem Eng 35:2034–2043CrossRefGoogle Scholar
  48. Kneupper CD, Basile PS, Fan WW, Noorman S (2012) Dow Global Technologies. Process and apparatus for producing and purifying epichlorohydrins. France, European Patent Application. Inventors: EP 2 537 837 A1. 26/12/2012Google Scholar
  49. Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereira L, Varila P (2005) Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 6(2):561–565CrossRefGoogle Scholar
  50. Kumari S, Mishra AK, Chattopadhyay DK, Raju KVSN (2007) Synthesis and characterization of hyperbranched polyesters and polyurethane coatings. J Polym Sci A Polym Chem 45:2673–2688CrossRefGoogle Scholar
  51. Lauriol-Garbey P, Millet JMM, Loridant S, Bellière-Baca V, Rey P (2011) New efficient and long-life catalyst for gas-phase glycerol dehydration to acrolein. J Catal 281:362–370CrossRefGoogle Scholar
  52. Lee PC, Lee WG, Lee SY, Chang HN (2000) Succinic acid production with reduced by-product formation in the fermentation of anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnol Bioeng 72:41–48CrossRefGoogle Scholar
  53. Liu X, Jensen PR, Workman M (2012) Bioconversion of crude glycerol feedstocks into ethanol by Pachysolen tannophilus. Bioresour Technol 104:579–586CrossRefGoogle Scholar
  54. Liu Q, Li J, Zhao Z, Gao M, Kong L, Liu J, Wei Y (2016) Synthesis, characterization, and catalytic performances of potassium-modified molybdenum-incorporated KIT-6 mesoporous silica catalysts for the selective oxidation of propane to acrolein. J Catal 344:38–52CrossRefGoogle Scholar
  55. Ma L, Zhu JW, Yuan XQ, Yue Q (2007) Synthesis of epichlorohydrin from dichloropropanols: kinetic aspects of the process. Chem Eng Res Des 85(A12):1580–1585CrossRefGoogle Scholar
  56. Martín M (2016) RePSIM metric for design of sustainable renewable based fuel and power production processes. Energy. doi: 10.1016/ Google Scholar
  57. Martín M, Grossmann IE (2011) Process optimization of FT-diesel production from biomass. Accept Ind Eng Chem Res 50(23):13485–13499CrossRefGoogle Scholar
  58. Martín M, Grossmann IE (2012) Simultaneous optimization and heat integration for biodiesel production from cooking oil and algae. Ind Eng Chem Res 51(23):7998–8014CrossRefGoogle Scholar
  59. Martín M, Grossmann IE (2013a) Optimal engineered algae composition for the integrated simultaneous production of bioethanol and biodiesel. AIChE J 59(8):2872–2883CrossRefGoogle Scholar
  60. Martín M, Grossmann IE (2013b) ASI: toward the optimal integrated production of biodiesel with internal recycling of methanol produced from glycerol. Environ Progr Sustain Energy 32(4):791–801CrossRefGoogle Scholar
  61. Martín M, Grossmann IE (2013c) On the systematic synthesis of sustainable biorefineries. Ind Eng Chem Res 52(9):3044–3064CrossRefGoogle Scholar
  62. Martín M, Grossmann IE (2014a) Optimal simultaneous production of hydrogen and liquid fuels from glycerol: integrating the use of biodiesel byproducts. Ind Eng Chem Res 53(18):7730–7745CrossRefGoogle Scholar
  63. Martín M, Grossmann IE (2014b) Simultaneous optimization and heat integration for the co-production of diesel substitutes: biodiesel (FAME & FAEE) and glycerol ethers from algae oil. Ind Eng Chem Res 53:11371–11383CrossRefGoogle Scholar
  64. Martín M, Grossmann IE (2014c) Optimization of i-butene production from Switchgrass. J Biomass Bioenergy 61:93–103CrossRefGoogle Scholar
  65. Martín M, Grossmann IE (2014d) Design of an optimal process for enhanced production of bioethanol and biodiesel from algae oil via glycerol fermentation. Appl Energy 135:108–114CrossRefGoogle Scholar
  66. Mateos S (2014) Planta de producción de 1,3-dihidroxiacetona a partir de glicerina MEng thesis. USALGoogle Scholar
  67. McNulty, T., Story, P., Creason, A., Scott, E. Matche (2014) Cost estimates, index of process equipment. Last Accessed June 2017.
  68. Melero JA, Vicente G, Morales G, Paniagua M, Moreno JM, Roldan R, Ezquerro A, Perez C (2008) Acid-catalyzed etherification of bio-glycerol and isobutylene over sulfonic mesostructured silicas. App Catal A 346:44–51CrossRefGoogle Scholar
  69. Mothes G, Schnorpfeil C, Ackermann JU (2007) Production of PHB from crude gylcerol. Eng Life Sci 7:475–479CrossRefGoogle Scholar
  70. Nelson S, Wallace G, McWorkman C, Bagley R. (2016) Glycerol to 1,3-propanediol through anaerobic fermentation.–16
  71. Nonato RV, Mantelatto PE, Rossell CEV (2001) Integrated production of biodegradable plastic, sugar and etanol. Appl Microbiol Biotechnol 57:1–5CrossRefGoogle Scholar
  72. Noureddini, H, Dailey W R, Hunt BA. (1998) Production of ethers of glycerol from crude glycerol -the by-product of biodlesel production. Papers in Biomaterials. Paper 18. Last accessed: June 2017
  73. Pachauri N, He B. (2006) Value-added utilization of crude glycerol from biodiesel production: a survey of current research activities. 2006 ASABE Meeting Presentation Paper Number: 066223 Google Scholar
  74. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina CD (2007) From glycerol to value-added products. Angew Chem Int Ed 46:4434–4440CrossRefGoogle Scholar
  75. Pérez C (2017) Production plant of Poly -3 hydroxybutirate from glycerol Meng. Universidad de Salamanca (In Spanish), ThesisGoogle Scholar
  76. Peters MS, Timmerhaus KD (2003) Plant design and economics for chemical engineers, 5th edn. Mc Graw-Hill, Singapore. ISBN 0-07-119872-5Google Scholar
  77. Peters MS, Timmerhaus KD, West RE. (2014) Plant Design and Economics for Chemical Engineers.
  78. Pinazo JM, Domine ME, Parvulescu V, Petru F (2015) Sustainability metrics for succinic acid production: a comparison between biomass-based and petrochemical routes. Catal Today 239:17–24CrossRefGoogle Scholar
  79. Posada JA, Naranjo JM, López JA, Higuita JC, Cardona CA (2011) Design and analysis of poly-3-hydroxybutyrate production processes from crude glycerol. Process Biochem 46(1):310–317CrossRefGoogle Scholar
  80. Posada JA, Rincón LE, Cardona CA (2012) Design and analysis of biorefineries based on raw glycerol: addressing the glycerol problem. Bioresour Technol 111:282–293CrossRefGoogle Scholar
  81. Puche J (2002) EP 1,331,260, Industrial managament, S.AGoogle Scholar
  82. Seraphim P, Patricia R, Bernard P, Fabrice B, Michel F (1999) High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J Biotechnol 77:191–208Google Scholar
  83. Shabaker JW, Huber GW, Dumesic JA (2004) Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts. J Catal 222:180–191CrossRefGoogle Scholar
  84. Silla, H. (2003) Chemical process engineering. Design and economics. New York, United States: Marcel Dekker Inc. ISBN: 0-8247-4274-5Google Scholar
  85. Sinnot RK, Towler G (2009) Chemical engineering design, 5th edn. Elsevier, SingaporeGoogle Scholar
  86. Song H, Lee SY (2006) Production of succinic acid by bacterial fermentation. Enzyme Microbial Technol 39:352–361CrossRefGoogle Scholar
  87. Sun J, Zhu K, Gao F, Wang C, Liu J, Peden CHF, Wang Y (2001) Direct Conversion of bioethanol to isobutene on nanosized mixed oxides with balanced acid-base sites. JACS 133:11096–11109CrossRefGoogle Scholar
  88. Tabah B, Varvak A, Pulidindi IN, Foran E, Banin E, Gedanken A (2016) Production of 1,3 –propanediol from glycerol via fermentation by Saccharomyces cerevisiae. Green Chem 18:4657–4666CrossRefGoogle Scholar
  89. Talebian-Kiakalaieh A, Amin NAS, Hezaveh H (2014) Glycerol for renewable acrolein production by catalytic dehydration. Renew Sustain Energy Rev 40:28–59CrossRefGoogle Scholar
  90. Tamon H, Kitamura K, Okazaki M (1997) Adsorption of carbon monoxide on activated carbon impregnated with metal halide. AIChE J 42:422–430CrossRefGoogle Scholar
  91. Tesser R, Santacesaria E, Di Serio M, Di Nuzzi G, Fiandra V (2007) Kinetics of glycerol chlorination with hydrochloric acid: a new route to α, γ-dichlorohydrin. Ind Eng Chem Res 46:6456–6465CrossRefGoogle Scholar
  92. The Board of Regents of the University of Nebraska (2000). Process for producing biodiesel duel with reduced viscosity and a cloud point below thirty-two (32) degrees fahrenheit. United States Patent. Inventor: Noureddini, H. US006015440A. 01/18/2000Google Scholar
  93. The Board of Regents of the University of Nebraska (2001). System and Process for Producing Biodiesel Fuel with Reduced Viscosity and a Cloud Point below Thirty-Two (32) Degrees Fahrenheit. United States Patent. Inventor: Noureddini, H. US006174501B1. 01/16/2001Google Scholar
  94. Toro CA, Hidalgo P, Navia R (2011) Development of polyesters from glycerol for na removal in biodiesel refining. J Biobased Mater Bio 5:1–8CrossRefGoogle Scholar
  95. Tsukuda E, Sato S, Takahashi R, Sodesawa T (2007) Production of acrolein from glycerol over silica-supported heteropoly acids. Catal Commun 8:1349–1353CrossRefGoogle Scholar
  96. Van Leeuwen BNM, van der Wupl AM, Duijnstee I, van Maris AJA, Straathof AJJ (2012) Permentative production of isbutene. Appl Microbiol Biotechnol 93:1377–1387CrossRefGoogle Scholar
  97. Vlad E, Bildea CS, Bozga G (2010) Integrated design and control of glycerol etherification processes. Bull Inst Pol Iasi LVI (LX) 4:139–148Google Scholar
  98. Vlad E, Bildea CS, Mihalachi M, Bozga G (2011) Design of glycerol etherification process by reactive distillation. Last accesed July 2013
  99. Vlysidis A, Binns M, Webb C, Theodoropoulos C (2011) A techno-economic analysis of biodiesel biorefineries: assessment of integrated designs for the co-production of fuels and chemicals. Energy 36:4671–4683CrossRefGoogle Scholar
  100. Wang J, Zhang M, Zheng Z, Yu F, Ji J (2013) The indirect conversion of glycerol into 1,3-dihydroxyacetone over magnetic polystyrene nanosphere immobilized tempo catalyst. Chem Eng J 229:234–238CrossRefGoogle Scholar
  101. Weissermel K, Arpe HJ (1997) Industrial organic chemistry, 3rd ed.; Wiley-VCH: Weinheim, Germany pp 294 − 299; ISBN: 978-3- 527-61459-2Google Scholar
  102. Yang F, Hanna MA, Sun R (2012) Value –added uses for crud glycerol-a byproduct of biodiesel production. Biotechnol Biofuels 5:13–22CrossRefGoogle Scholar
  103. Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–552CrossRefGoogle Scholar
  104. Zhao W, Yang B, Yi C, Lei Z, Xu J (2010) Etherification of glycerol with isobutylene to produce oxygenate additive using sulfonated peanut shell catalyst. Ind Eng Chem Res 49(24):12399–12404CrossRefGoogle Scholar
  105. Zheng Z, Muo M, Yu J, Wang J, Ji J (2012) Novel process for 1,3-dihydroxyacetone production from glycerol. 1. Technological Feasibility Study and Process Design. Ind Eng Chem Res 51(9):3715–3721CrossRefGoogle Scholar
  106. Zheng XJ, Jin KQ, Zhang L, Wang G, Liu YP (2016) Effects of oxygen transfer coefficient on dihydroxyacetone production from crude glycerol. Braz J Microbiol 47(1):129–135CrossRefGoogle Scholar
  107. Zhu S, Qiu Y, Zhu Y, Hao S, Zheng H, Li Y (2013) Hydrogenolysis of Glycerol to 1,3-Propanediol over Bifunctional Catalysts Containing Pt and Heteropolyacids. Catal Today 212:120–126CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Alberto Almena
    • 2
  • Laura Bueno
    • 2
  • Marcos Díez
    • 1
  • Mariano Martín
    • 1
  1. 1.Departamento de Ingeniería QuímicaUniversidad de SalamancaSalamancaSpain
  2. 2.School of Chemical EngineeringUniversity of BirminghamBirminghamUK

Personalised recommendations