Clean Technologies and Environmental Policy

, Volume 19, Issue 6, pp 1745–1759 | Cite as

Environmental study of producing microalgal biomass and bioremediation of cattle manure effluents by microalgae cultivation

  • Marisa Daniele Scherer
  • Amanda Cristina de Oliveira
  • Fernando Jorge Corrêa Magalhães Filho
  • Cássia Maria Lie Ugaya
  • André Bellin Mariano
  • José Viriato Coelho Vargas
Original Paper


This study conducts a Life Cycle Assessment (LCA) of microalgae grown in laboratory scale using different mediums to produce biomass and purify the effluent organic load. Within this LCA, two microalgae cultivation systems were evaluated: (1) cultivation with synthetic nutrients (CSN) and (2) cultivation with cattle manure effluent from biodigestion (CME). The comparison unit among the two culture systems was the production of 10 g of dry microalgae Scenedesmus sp. biomass through the CML 2000 method. Environmental aspects and impacts of the two systems were analyzed, showing that the CME required less water and reduced the potential for eutrophication in comparison with the CSN. Furthermore, the CME reduced all physical–chemical parameters indicating efficient purification of the effluent through microalgae cultivation, resulting in a 92.5% decrease in total nitrogen and a 51.9% decrease in phosphorus. The key conclusions were that CME is an environmentally conscious and promising technology for wastewater treatment when combined with microalgae biomass production. Although the analysis was conducted in laboratory scale, it is reasonable to project the results to a larger-scale production, provided that adequate control strategies are implemented. Follow-up studies should be conducted with microalgae cultivated in similar effluents to cattle manure (e.g., pig or chicken manure, sugar cane industry effluents and wastewater) in order to evaluate their potential for biomass production and wastewater treatment applications.


Scenedesmus sp. Biomass production Cattle manure effluent Bioremediation Life cycle assessment 





Abiotic depletion


Biochemical oxygen demand


Crops with cattle manure effluent


Chemical oxygen demand


Crops with synthetic nutrients


Depletion of the ozone layer


Ethylenediaminetetraacetic acid


Ecotoxicology of freshwater resources


Ecotoxicity of marine water resources




Greenhouse gas emissions


Global warming potential


Human toxicity


Life cycle assessment


Life cycle inventory


Life cycle impact assessment


Center for Research and Development in Sustainable Energy




Photochemical oxidation


Terrestrial ecotoxicity


Upflow anaerobic sludge blanket



The authors acknowledge with gratitude the support of the Brazilian National Council of Scientific and Technological Development, CNPq (Projects 403560/2013-6, 407198/2013-0, 407204-2013-0, 482336/2012-9 and 485058/2012-0), projects CAPES/CAFP—062/14, Peugeot-Citroen 41-2013 and NILKO Technology Ltda.


  1. Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275CrossRefGoogle Scholar
  2. APHA, AWWA, WEF (2012) Standard methods for the examination of water and wastewater, 22nd edn. APHA, Washington DCGoogle Scholar
  3. Associação Brasileira de Normas Técnicas (ABNT) (2006) NBR ISO 14040: Gestão ambiental—Avaliação do ciclo de vida—Princípios e estrutura. Rio de Janeiro, p 20Google Scholar
  4. Associação Brasileira de Normas Técnicas (ABNT) (2006) NBR ISO 14044: Gestão ambiental—Avaliação do ciclo de vida—Requisitos e orientações. Rio de Janeiro, p 46Google Scholar
  5. Bahr M, Díaz I, Dominguez A, González Sánchez A, Muñoz R (2014) Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents. Environ Sci Technol 48(1):573–581. doi: 10.1021/es403596m CrossRefGoogle Scholar
  6. Batan L, Quinn J, Willson B, Bradley T (2010) Net energy and greehouse gas emission evaluation of biodiesel derived from microalgae. Environ Sci Technol 44:7975–7980Google Scholar
  7. Benedetto L, Klemes J (2009) The environmental performance strategy map: an integrated lca approach to support the strategic decision-making process. J Clean Prod 17:900–906CrossRefGoogle Scholar
  8. Brennan L, Owende P (2010) Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577CrossRefGoogle Scholar
  9. Brentner LB, Eckelman MJ, Zimmerman JB (2011) Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environ Sci Technol 45:7060–7067CrossRefGoogle Scholar
  10. Chowdhury R, Viamajala S, Gerlach R (2012) Reduction of environmental and energy footprint of microalgal biodiesel production through material and energy integration. Bioresour Technol 108:102–111CrossRefGoogle Scholar
  11. Chu SP (1942) The influence of the mineral composition if the medium on the growth of planktonic algae. J Ecol 30(2):284–325CrossRefGoogle Scholar
  12. Cicci A, Bravi M (2014) Production of the freshwater microalgae scenedesmus dimorphus and arthrospira platensis by using cattle digestate. Chem Eng Trans 38:85–90Google Scholar
  13. Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44(5):1813–1819CrossRefGoogle Scholar
  14. Coats ER, Searcy E, Feris K, Shrestha D, McDonald AG, Briones A, Magnuson T, Prior M (2013) An integrated two-stage anaerobic digestion and biofuel production process to reduce life cycle GHG emissions from us dairies. Biofuels, Bioprod Biorefin 7:459–473CrossRefGoogle Scholar
  15. Collet P, Hélias A, Lardon L, Ras M, Goy R-A, Steyer J-P (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102(1):207–214CrossRefGoogle Scholar
  16. Dones R, Bauer C, Bolliger R, Burger B, Faist Emmernergger, M, Frichknecht R, Heck T, Jungbluth N, Roder A, Tuchschmid M (2007) Life cycle inventory of energy systems: results for current systems in switzerland and other UCTE countries: ecoinvent report no. 5. Paul Scherrer Institut Villigen, Swiss Centre for Life Cycle Inventories, DubendorfGoogle Scholar
  17. Ecoinvent Centre (2010) Ecoinvent data v2.2. Ecoinvent reports. Swiss Centre for Life Cycle Inventories. Dusseldorf, Switzerland.
  18. Ellis JT, Hengge N, Sims RC, Miller CD (2012) Acetone, butanol, and ethanol production from wastewater algae Bioresour Technol 111:491–495Google Scholar
  19. Epa (U.S. Environmental Protection Agency) (2010) Regulations of fuels and fuels additives: changes to renewable fuel standard program; final rule. Federal register, Vol. 5, No. 58; 14670—14904, March 26Google Scholar
  20. Figueirêdo MCB, Rosa MF, Ugaya CML, Souza Filho MSM, Brait ACC, Melo LFL (2012) Life cycle assessment of cellulose nanowhiskers. J Clean Prod 35:130–139CrossRefGoogle Scholar
  21. Ghassan TA, Mohamad I, Al-Widyan B, Ali OA (2003) Combustion performance and emissions of ethyl ester of a waste vegetable oil in a water-cooled furnace. Appl Therm Eng 23:285–293CrossRefGoogle Scholar
  22. Goedkoop M, Schryver A, Oele M (2008) Introduction to LCA with SimaPro 7. PRé Consultants, The NetherlandsGoogle Scholar
  23. Guinée J (2001) Handbook on life cycle assessment—operational guide to the ISO standards. Int J LCA 6(5):255CrossRefGoogle Scholar
  24. Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Sleeswijk AW, Suh S, de Haes HAU, de Bruijn, H, van Duin R, Huijbregts MAJ (2001) Life cycle assessment — An operational guide to the ISO standards. Centre for Environmental Studies (CML), Leiden University. doi: 10.1007/bf02978784
  25. Handler RM, Canter CE, Kalnes TN, Lupton FS, Kholiqov O, Shonnard DR, Blowers P (2012) Evaluation of environmental impacts from microalgae cultivation in open-air raceway ponds: analysis of the prior literature and investigation of wide variance in predicted impacts. Algal Res 1:83–92Google Scholar
  26. Itoiz ES, Fuentes-Grünewald C, Gasol CM, Gracés E, Alacid E, Rossi S, Rieradevall J (2012) Energy balance and environmental impact analysis of marine microalgal biomass production for biodiesel generation in a photobioreactor pilot plant. Biomass Bioenergy 39:324–335CrossRefGoogle Scholar
  27. Kunz A, De Oliveira PAV (2006) Aproveitamento de dejetos de animais para geração de biogás. Política Agrícola 15(3):28–35Google Scholar
  28. Lardon L, Hélias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481Google Scholar
  29. Ledda C, Idà A, Allemand D, Mariani P, Adani F (2015) Production of wild Chlorella sp. cultivated in digested and membrane-pretreated swine manure derived from a full-scale operation plant. Algal Res 12:68–73Google Scholar
  30. Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosci Inst 1:84Google Scholar
  31. Lustosa PRB, Ponte VMR, Dominas WR (2010) Aplicabilidade do Método de Simulação de Monte Carlo na Previsão dos Custos de Produção de Companhias Industriais: O Caso da Companhia Vale do Rio Doce. RCO-Revista de Contabilidade e Organizações—FEA-RP/UESP, 4(10):152–173Google Scholar
  32. Mcginn PJ, Dickinson KE, Bhatti S, Frigon J, Guiot SR, O’leary, SJB (2011) Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth Res 109:231–247Google Scholar
  33. Oliveira AC (2013) Produção de biomassa de microalgas Scenedesmus sp. em efluente de bovinocultura biodigerido. 82 f. Dissertação (Mestrado)—Curso de Engenharia e Ciência dos Materiais, Universidade Federal do Paraná, CuritibaGoogle Scholar
  34. Petersen SO, Sommer SG, Béline F, Burton C, Dach J, Dourmad JY, Leip A, Misselbrook T, Nicholson F, Poulsen HD, Provolo G, Sørensen P, Vinnerås B, Weiske A, Bernal MP, Böhm R, Juhász C, Mihelic R (2007) Recycling of livestock manure in a whole-farm perspective. Livestock Sci 112:180–191CrossRefGoogle Scholar
  35. Pittman JK, Dean AP, Osundeko O (2010) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25CrossRefGoogle Scholar
  36. Ruiz J, Álvarez P, Arbibb Z, Garrido C, Barragán J, Perales JA (2011) Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris. Int J Phytoremed 13:884–896CrossRefGoogle Scholar
  37. Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. The Int J Life Cycle Assess 15(7):704–714CrossRefGoogle Scholar
  38. Silva A, Carter R, Merss F, Corrêa D, Vargas JVC, Mariano AB, Ordonez J, Scherer MD (2013) Life cycle assessment of biomass production in microalgae compact photobioreactors. GCB Bioenergy 7:184–194. doi: 10.1111/gcbb.12120 CrossRefGoogle Scholar
  39. Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuel 24:4062–4077CrossRefGoogle Scholar
  40. Subhadra B, Edwards M (2010) An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy 38:4897–4902CrossRefGoogle Scholar
  41. Taher DM (2013) Biodiesel de microalgas cultivadas em dejeto suíno biodigerido. 106 f. Dissertação (Mestrado)—Curso de Engenharia e Ciência dos Materiais, Universidade Federal do Paraná, CuritibaGoogle Scholar
  42. Ubando AA, Cuello JL, Cullaba BA (2014) Multi-criterion evaluation of cultivation systems for sustainable algal biofuel production using analytic hierarchy process and monte carlo simulation. Energy Procedia 61:389–392CrossRefGoogle Scholar
  43. Van Beilen JB (2010) Why microalgal biofuels won't save the internal combustión machine. Biofuels Bioprod Biorefin 4:41–52CrossRefGoogle Scholar
  44. Vargas JVC, Balmant W, Stall A, Mariano AB, Ordonez JC, Hovsapian R, Dilay E (2012) Patent Number(s): US2012088296-Al; WO2012050608-A1—Photo-bioreactor for growing algae e.g. microalgae within nutrient medium, comprises support frame, horizontal bioreactor tubes, gassing/degassing housings, pH sensor, temperature sensor, and pump for circulating nutrient medium, Estados UnidosGoogle Scholar
  45. Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102:159–165CrossRefGoogle Scholar
  46. Yen HW, Hu IC, Chen CY, Ho SH, Lee DJ, Chang JS (2013) Microalgae-based biorefinery-from biofuels to natural products. Bioresour Technol 135:166–174CrossRefGoogle Scholar
  47. Zhou W, Li Y, Min M, Hu B, Chen P, Ruan R (2011) Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresour Technol 102(13):6909–6919CrossRefGoogle Scholar
  48. Zhou WG, Hu B, Li Y, Min M, Chen P, Ruan R (2012) A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresour Technol 110:448–455CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Marisa Daniele Scherer
    • 1
  • Amanda Cristina de Oliveira
    • 1
  • Fernando Jorge Corrêa Magalhães Filho
    • 2
  • Cássia Maria Lie Ugaya
    • 3
  • André Bellin Mariano
    • 1
  • José Viriato Coelho Vargas
    • 1
  1. 1.Universidade Federal Do ParanáCuritibaBrazil
  2. 2.Universidade Católica Dom BoscoCampo GrandeBrazil
  3. 3.Universidade Tecnológica Federal do ParanáCuritibaBrazil

Personalised recommendations