Skip to main content

Advertisement

Log in

The study of photoelectrochemical properties of LaMnO3, LaFeO3, LaCrO3, and LaNiO3 photoelectrodes for hydrogen production

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

The LaMnO3, LaFeO3, LaCrO3, and LaNiO3 films were deposited on aluminum plate substrates by sol–gel method. Physical characterization and photoresponse studies were carried out to investigate the possibility of applying these film electrodes in solar photoelectrochemical systems. X-ray diffractions analysis revealed the crystal structures of the films with LaNiO3 having the smallest grain size of 40.87 nm, corresponding well to the results obtained from field emission scanning electron microscopy/energy-dispersive analysis. Pore size distribution analysis showed that the films exhibited highly porous and hierarchical structures. The band gaps and carrier densities determined using photoluminescence spectrum and Mott–Schottky analysis were in the range of 2.28–2.67 eV, and 3.95 × 1015–7.65 × 1017 cm−3, respectively. The flat-band potentials lay in between −0.217 and −0.459 V versus normal hydrogen electrode. Based on these, the conduction and valance bands of the films were found to be in the range of −0.386 to −0.685, and +1.718 to +2.284 V versus normal hydrogen electrode, respectively. LaNiO3 film yielded the maximum photocurrent density of 0.54 mA/cm2 in 0.1 M KOH with external potential kept at 0.5 V and illumination at 100 mW/cm2. This paper demonstrated the effectiveness of the sol–gel approach for producing thin-film semiconductor with great potential in hydrogen production due to its high stability and photoelectrochemical efficiency in the visible light region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bao D, Wakiya N, Shinozaki K, Mizutani N, Yao X (2001) Improved electrical properties of (Pb, La) TiO3 thin films using compositionally and structurally compatible LaNiO3 thin films as bottom electrodes. Appl Phys Lett 78:3286–3288

    Article  CAS  Google Scholar 

  • Brunckova H et al (2016) Perovskite lanthanum niobate and tantalate thin films prepared by sol–gel method. Mater Lett 165:239–242

    Article  CAS  Google Scholar 

  • Chang W et al (2005) Electronic structure and transport properties of La0.7Ce0.3MnO3. Phys Rev B 72:132410

    Article  Google Scholar 

  • Cheng K-W, Huang C-M, Pan G-T, Chang W-S, Lee T-C, Yang TC (2007) The physical properties and photoresponse of AgIn5S8 polycrystalline film electrodes fabricated by chemical bath deposition. J Photochem Photobiol A 190:77–87

    Article  CAS  Google Scholar 

  • Eguchi R et al (2009) Fermi surfaces, electron–hole asymmetry, and correlation kink in a three-dimensional Fermi liquid LaNiO3. Phys Rev B 79:115122

    Article  Google Scholar 

  • Fujishima A (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  • Garcia V, Nair M, Nair P, Zingaro R (1996) Preparation of highly photosensitive CdSe thin films by a chemical bath deposition technique. Semicond Sci Technol 11:427

    Article  CAS  Google Scholar 

  • Golalikhani M, Lei Q, Wolak M, Davidson B, Xi X (2016) Narrow growth window for stoichiometric, layer-by-layer growth of LaAlO3 thin films using pulsed laser deposition. J Cryst Growth 443:50–53

    Article  CAS  Google Scholar 

  • Hao P et al (2014) Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6:12120–12129

    Article  CAS  Google Scholar 

  • Haye E, Capon F, Barrat S, Mangin D, Pierson J-F (2016) Phenomenological study of iron and lanthanum magnetron co-sputtering using two reactive gases. Surf Coat Technol 298:39–44

    Article  CAS  Google Scholar 

  • Hong J, Stroppa A, Íñiguez J, Picozzi S, Vanderbilt D (2012) Spin–phonon coupling effects in transition-metal perovskites: a DFT + U and hybrid-functional study. Phys Rev B 85:054417

    Article  Google Scholar 

  • Huang H, Sun G, Hu J, Jiao T (2014) Single-step synthesis of LaMnO3/MWCNT nanocomposites and their photocatalytic activities. Nanomater Nanotechnol 4:4–27

    Article  Google Scholar 

  • Jiang Q et al (2007) Catalytic chemical vapor deposition of carbon nanotubes using Ni–La–O precursors. Mater Lett 61:2749–2752

    Article  CAS  Google Scholar 

  • Kaczkowski J, Jezierski A (2013) Electronic structure of the cubic perovskites BiMO3 (M = Al, Ga, In, Sc). Acta Phys Pol A 124:852–854

    Article  CAS  Google Scholar 

  • Kida T, Guan G, Yoshida A (2003) LaMnO3/CdS nanocomposite: a new photocatalyst for hydrogen production from water under visible light irradiation. Chem Phys Lett 371:563–567

    Article  CAS  Google Scholar 

  • Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic–inorganic nanocomposite materials. Chem Mater 13:3169–3183

    Article  CAS  Google Scholar 

  • Laiho R et al (2004) Lattice distortions, magnetoresistance and hopping conductivity in LaMnO3 + δ. J Phys Condens Matter 17:105

    Article  Google Scholar 

  • Le Paven C et al (2015) Growth of (Sr, La)–(Ta, Ti)–ON perovskite oxide and oxynitride films by radio frequency magnetron sputtering: influence of the reactive atmosphere on the film structure. J Cryst Growth 413:5–11

    Article  Google Scholar 

  • Lee C et al (2016) Three-dimensional arrangements of perovskite-type oxide nano-fiber webs for effective soot oxidation. Appl Catal B 191:157–164

    Article  CAS  Google Scholar 

  • Li Y, Yao S, Wen W, Xue L, Yan Y (2010) Sol–gel combustion synthesis and visible-light-driven photocatalytic property of perovskite LaNiO3. J Alloys Compd 491:560–564

    Article  CAS  Google Scholar 

  • Li J, Pan X, Xu Y, Jia L, Yi X, Fang W (2015) Synergetic effect of copper species as cocatalyst on LaFeO3 for enhanced visible-light photocatalytic hydrogen evolution. Int J Hydrog Energy 40:13918–13925

    Article  CAS  Google Scholar 

  • Liu T, Xu Y (2011) Synthesis of nanocrystalline LaFeO3 powders via glucose sol–gel route. Mater Chem Phys 129:1047–1050

    Article  CAS  Google Scholar 

  • Mathis J et al (2016) Increased photocatalytic activity of TiO2 mesoporous microspheres from codoping with transition metals and nitrogen. Ceram Int 42:3556–3562

    Article  CAS  Google Scholar 

  • Meng F, Li J, Hong Z, Zhi M, Sakla A, Xiang C, Wu N (2013) Photocatalytic generation of hydrogen with visible-light nitrogen-doped lanthanum titanium oxides. Catal Today 199:48–52

    Article  CAS  Google Scholar 

  • Milanova M, Koleva I, Todorovska R, Zaharieva J, Кostadinov M, Todorovsky D (2011) Polymetallic citric complexes as precursors for spray-pyrolysis deposition of thin ferrite films. Appl Surf Sci 257:7821–7826

    Article  CAS  Google Scholar 

  • Nakajima T, Tsuchiya T, Ichihara M, Nagai H, Kumagai T (2008) Epitaxial growth mechanism for perovskite oxide thin films under pulsed laser irradiation in chemical solution deposition process. Chem Mater 20:7344–7351

    Article  CAS  Google Scholar 

  • Nithya V, Immanuel RJ, Senthilkumar S, Sanjeeviraja C, Perelshtein I, Zitoun D, Selvan RK (2012) Studies on the structural, electrical and magnetic properties of LaCrO3, LaCr0.5Cu0.5O3 and LaCr0.5Fe0.5O3 by sol–gel method. Mater Res Bull 47:1861–1868

    Article  CAS  Google Scholar 

  • Pan G-T, Lai M-H, Juang R-C, Chung T-W, Yang TC-K (2010) The preparation and characterization of Ga-doped CuInS2 films with chemical bath deposition. Sol Energy Mater Sol Cells 94:1790–1796

    Article  CAS  Google Scholar 

  • Popuri SR, Redpath D, Chan G, Smith RI, Cespedes O, Bos J-WG (2015) Antisite-disorder, magnetic and thermoelectric properties of Mo-rich Sr2Fe1−yMo1+yO6 (0 ≤ y ≤ 0.2) double perovskites. Dalton Trans 44:10621–10627

    Article  CAS  Google Scholar 

  • Poznyak S, Kokorin A, Kulak A (1998) Effect of electron and hole acceptors on the photoelectrochemical behaviour of nanocrystalline microporous TiO2 electrodes. J Electroanal Chem 442:99–105

    Article  CAS  Google Scholar 

  • Shaterian M, Enhessari M, Rabbani D, Asghari M, Salavati-Niasari M (2014) Synthesis, characterization and photocatalytic activity of LaMnO3 nanoparticles. Appl Surf Sci 318:213–217

    Article  CAS  Google Scholar 

  • Tang H, Prasad K, Sanjines R, Schmid P, Levy F (1994) Electrical and optical properties of TiO2 anatase thin films. J Appl Phys 75:2042–2047

    Article  CAS  Google Scholar 

  • Wang X, Dai H, Mu X, Liu C (2016) Formation of TiO2 nanorods by Zn and Ti ion sequential implantation with enhanced visible optical absorption properties. Mater Lett 174:17–20

    Article  Google Scholar 

  • Xiao J, Xie Y, Cao H, Nawaz F, Zhang S, Wang Y (2016) Disparate roles of doped metal ions in promoting surface oxidation of TiO2 photocatalysis. J Photochem Photobiol A 315:59–66

    Article  CAS  Google Scholar 

  • Yang K-S, Choi M-J, Choi J-S, Eom J-H, Park B-J, Lee S-Y, Yoon S-G (2016) Lead-free 0.75(Bi0.5Na0.5)TiO3–0.25SrTiO3 (BNT–ST) epitaxial films grown on Si (001) substrates via pulsed laser deposition. Sens Actuators A 243:117–122

    Article  CAS  Google Scholar 

  • Ye A, Fan W, Zhang Q, Deng W, Wang Y (2012) CdS–graphene and CdS–CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation. Catal Sci Technol 2:969–978

    Article  CAS  Google Scholar 

  • Yun-Zhong C, Pryds N, Ji-Rong S, Bao-Gen S, Linderoth S (2013) High-mobility two-dimensional electron gases at oxide interfaces: origin and opportunities. Chin Phys B 22:116803

    Article  Google Scholar 

  • Zhong Y, Zhao G, Ma F, Wu Y, Hao X (2016) Utilizing photocorrosion-recrystallization to prepare a highly stable and efficient CdS/WS2 nanocomposite photocatalyst for hydrogen evolution. Appl Catal B 199:466–472

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The partial financial support from the Ministry of Science and Technology of ROC (MOST 104-2119-M-027-001) is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C.-K. Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, GT., Chong, S., Pan, KL. et al. The study of photoelectrochemical properties of LaMnO3, LaFeO3, LaCrO3, and LaNiO3 photoelectrodes for hydrogen production. Clean Techn Environ Policy 19, 1557–1565 (2017). https://doi.org/10.1007/s10098-016-1319-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1319-4

Keywords

Navigation