Novel alkali-promoted hydrotalcite for selective synthesis of 2-methoxy phenyl benzoate from guaiacol and benzoic anhydride


Esters find several applications such as solvents, flavours and fragrants and intermediates in synthesis of drugs. In the present work, 2-methoxy phenyl benzoate was efficiently synthesized from guaiacol and benzoic anhydride by acylation. A variety of catalysts such as hydrotalcite and alkali-promoted hydrotalcite was synthesized. Potassium-promoted hydrotalcite (K/HT) calcined at 500 °C for 6 h was active, selective and reusable. It was characterized by different techniques. A slurry batch reactor was used to study reaction mechanism and kinetics. 2-Methoxy phenyl benzoate was efficiently obtained with 100% selectivity at guaiacol conversion of 98% over K/HT at 100 °C after 6 h. A power law model with second-order kinetics was fitted to obtain an apparent activation energy of reaction of 21.1 kcal mol−1. The process is clean and green.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Scheme 2
Fig. 17
Fig. 18


A :

Reactant species A, guaiacol

B :

Reactant species B, benzoic anhydride

D :

Product species D, 2-methoxy phenyl benzoate

E :

Product species E, benzoic acid

AS 1 :

Chemisorbed guaiacol on vacant sites of type S 1

BS 2 :

Chemisorbed benzoic anhydride on vacant sites of type S 2

DS 2 :

Chemisorbed 2-methoxy phenyl benzoate on vacant sites of type S 2

ES 1 :

Chemisorbed benzoic acid on vacant sites of type S 1

C A :

Concentration of A, guaiacol (mol L−1)

\(C_{{A_{0} }}\) :

Initial concentration of A in bulk liquid phase (mol L−1)

\(C_{{AS_{1} }}\) :

Adsorption concentration of A on active site S 1 (mol g−1 of cat)

C B :

Concentration of B, benzoic anhydride (mol L−1)

\(C_{{B_{0} }}\) :

Initial concentration of B in bulk liquid phase (mol L−1)

\(C_{{BS_{2} }}\) :

Adsorption concentration of B on active site S 2 (mol g−1 of cat)

C D :

Concentration of D, 2-methoxy phenyl benzoate (mol L−1)

\(C_{{DS_{2} }}\) :

Concentration of D on active sites of type S 2 (mol g−1 of cat)

C E :

Concentration of E, benzoic acid (mol L−1)

\(C_{{ES_{1} }}\) :

Concentration of E on active sites of type S 1 (mol g−1 of cat)

\(C_{{S_{1} }}\) :

Concentration of vacant sites of type S 1 (mol g−1 of cat)

\(C_{{S_{2} }}\) :

Concentration of vacant sites of type S 2 (mol g−1of cat)

\(C_{{{\text{T}}_{1} }}\) :

Total concentration of vacant sites of type S 1 (mol g−1 of cat)

\(C_{{{\text{T}}_{2} }}\) :

Total concentration of vacant sites of type S 2 (mol g−1 of cat)

C T :

Total concentration of sites (mol g−1 of cat)

K A :

Adsorption constant for A (L mol−1)

K B :

Adsorption constant for B (L mol−1)

K D :

Adsorption constant for D (L mol−1)

K E :

Adsorption constant for E (L mol−1)

1/K D :

Desorption constant for D from catalyst site S 2 (L mol−1)

1/K E :

Desorption constant for E from catalyst site S 1 (L mol−1)

k 1 :

Forward reaction rate constant for surface reaction (L2 mol−1 s−1 g-cat−1)

\(k_{1}^{\prime }\) :

Backward reaction rate constant for surface reaction (L2 mol−1 s−1 g-cat−1)

k 2 :

Second-order rate constant (L mol−1 s−1)

M :

Molar ratio of \({{C_{{B_{0} }} } \mathord{\left/ {\vphantom {{C_{{B_{0} }} } {C_{{A_{0} }} }}} \right. \kern-0pt} {C_{{A_{0} }} }}\)

r A :

Rate of reaction (mol L−1 min−1)

w :

Catalyst loading (g L−1)

X A :

Fractional conversion of A

t :

Time (min)


  1. Balaskar RS, Gavade SN, Mane MS, Shingare MS, Mane DV (2011) Morpholinium bisulfate [morH][HSO4]-promoted O, S, and N acylation at room temperature. Green Chem Lett Rev 4:91–95. doi:10.1080/17518253.2010.504751

    CAS  Article  Google Scholar 

  2. Ballini R, Bosica G, Carloni S, Ciaralli L, Maggi R, Sartori G (1998) Zeolite HSZ-360 as a new reusable catalyst for the direct acetylation of alcohols and phenols under solventless conditions. Tetrahedron Lett 39:6049–6052. doi:10.1016/S0040-4039(98)01244-1

    CAS  Article  Google Scholar 

  3. Bartoli G, Bosco M, Dalpozzo R, Marcantoni E, Massaccesi M, Rinaldi S, Sambri L (2003) Mg(ClO4)2 as a powerful catalyst for the acylation of alcohols under solvent-free conditions. Synlett 2003:0039–0042. doi:10.1055/s-2003-36228

    Google Scholar 

  4. Chakraborti AK, Gulhane R (2003) Indium(III) chloride as a new, highly efficient, and versatile catalyst for acylation of phenols, thiols, alcohols, and amines. Tetrahedron Lett 44:6749–6753. doi:10.1016/S0040-4039(03)01641-1

    CAS  Article  Google Scholar 

  5. Dalpozzo R, De Nino A, Maiuolo L, Procopio A, Nardi M, Bartoli G, Romeo R (2003) Highly efficient and versatile acetylation of alcohols catalyzed by cerium (III) triflate. Tetrahedron Lett 44:5621–5624. doi:10.1016/S0040-4039(03)01358-3

    CAS  Article  Google Scholar 

  6. Gore PH (1955) The Friedel–Crafts acylation reaction and its application to polycyclic aromatic hydrocarbons. Chem Rev 55:229–281. doi:10.1021/cr50002a001

    CAS  Article  Google Scholar 

  7. Jin TS, Ma YR, Zhang ZH, Li TS (1998) Sulfamic acid catalysed acetylation of alcohols and phenols with acetic anhydride. Synth Commun 28:3173–3177. doi:10.1080/00397919808004417

    CAS  Article  Google Scholar 

  8. Lavoie JM, Baré W, Bilodeau M (2011) Depolymerization of steam-treated lignin for the production of green chemicals. Bioresour Technol 102:4917–4920. doi:10.1016/j.biortech.2011.01.010

    CAS  Article  Google Scholar 

  9. Liu Z, Ma Q, Liu Y, Wang Q (2014) 4-(N, N-dimethylamino)pyridine hydrochloride as a recyclable catalyst for acylation of inert alcohols: substrate scope and reaction mechanism. Org Lett 16:236–239. doi:10.1021/ol4030875

    CAS  Article  Google Scholar 

  10. Massah AR, Kalbasi RJ, Toghiani M, Hojati B, Adibnejad M (2012) Hydrotalcite as an efficient and reusable catalyst for acylation of phenols, amines and thiols under solvent-free conditions. Eur J Chem 9:2501–2508. doi:10.1155/2012/872509

    CAS  Google Scholar 

  11. Mirk D, Willner A, Fröhlich R, Waldvogel SR (2004) Iodinated biaryls synthesized by the direct dehydrodimerization of iodoarenes using phenyliodine(III) bis(trifluoroacetate) (PIFA). Adv Synth Catal 346:675–681. doi:10.1002/adsc.200404024

    CAS  Article  Google Scholar 

  12. Naeimi H, Amini A, Moradian M (2014) Regioselective direct ortho C-acylation of phenol and naphthol derivatives catalyzed by modified ZnCl2 on Al2O3 as catalyst under solvent-free and microwave conditions. Org Chem Front 1:415–421. doi:10.1039/C4QO00031E

    CAS  Article  Google Scholar 

  13. Phukan P (2004) Iodine as an extremely powerful catalyst for the acetylation of alcohols under solvent-free conditions. Tetrahedron Lett 45:4785–4787. doi:10.1016/j.tetlet.2004.04.076

    CAS  Article  Google Scholar 

  14. Ralston AW, McCorkle MR, Bauer ST (1940) Orientation in the acylation of phenol and in the rearrangement of phenolic esters. J Org Chem 05:645–659. doi:10.1021/jo01212a011

    CAS  Article  Google Scholar 

  15. Romanelli GP, Bennardi DO, Autino JC, Baronetti GT, Thomas HJ (2008) A simple and mild acylation of alcohols, phenols, amines, and thiols with a reusable heteropoly acid catalyst (H6P2W18O62·24 H2O). Eur J Chem 5:641–647. doi:10.1155/2008/945898

    CAS  Google Scholar 

  16. Satam JR, Jayaram RV (2008) Acetylation of alcohols, phenols and amines using ammonium salt of 12-tungstophosphoric acid: environmentally benign method. Catal Commun 9:2365–2370. doi:10.1016/j.catcom.2008.05.033

    CAS  Article  Google Scholar 

  17. Sheldon RA (2012) Fundamentals of green chemistry: efficiency in reaction design. Chem Soc Rev 41:1437–1451. doi:10.1039/C1CS15219J

    CAS  Article  Google Scholar 

  18. Shivani, Gulhane R, Chakraborti AK (2007) Zinc perchlorate hexahydrate [Zn(ClO4)2·6H2O] as acylation catalyst for poor nucleophilic phenols, alcohols and amines: scope and limitations. J Mol Catal A Chem 264:208–213. doi:10.1016/j.molcata.2006.09.015

    CAS  Article  Google Scholar 

  19. Yadav GD (2005) Synergism of clay and heteropoly acids as nano-catalysts for the development of green processes with potential industrial applications. Catal Surv Asia 9:117–137

    CAS  Article  Google Scholar 

  20. Yadav GD, Aduri P (2012) Aldol condensation of benzaldehyde with heptanal to jasminaldehyde over novel Mg–Al mixed oxide on hexagonal mesoporous silica. J Mol Catal A Chem 355:142–154

    CAS  Article  Google Scholar 

  21. Yadav GD, Bokade VV (1996) Novelties of heteropoly acid supported on clay: etherification of phenethyl alcohol with alkanols. Appl Catal A Gen 147:299–323

    CAS  Article  Google Scholar 

  22. Yadav GD, Chandan PA (2014) A green process for glycerol valorization to glycerol carbonate using heterogeneous base catalyst. Catal Today 237:47–53

    CAS  Article  Google Scholar 

  23. Yadav GD, Doshi NS (2002) Development of a green process for poly-α-olefin based lubricants. Green Chem 4:528–540

    CAS  Article  Google Scholar 

  24. Yadav GD, Fernandes GP (2013) Selective synthesis of natural benzaldehyde by hydrolysis of cinnamaldehyde using novel hydrotalcite catalyst. Catal Today 207:162–169

    CAS  Article  Google Scholar 

  25. Yadav GD, Joshi A (2002) A green route for the acylation of resorcinol with acetic acid. Clean Technol Environ Policy 4:157–164. doi:10.1007/s10098-002-0148-9

    CAS  Article  Google Scholar 

  26. Yadav GD, Kadam AA (2013) Selective engineering using Mg–Al calcined hydrotalcite and microwave irradiation in mono-transesterification of diethyl malonate with cyclohexanol. Chem Eng J 230:547–557

    CAS  Article  Google Scholar 

  27. Yadav GD, Kirthivasan N (1995) Single-pot synthesis of methyl tert-butyl ether from tert-butyl alcohol and methanol: dodecatungstophosphoric acid supported on clay as an efficient. JCS Chem Commun. doi:10.1039/C39950000203

  28. Yadav GD, Nair JJ (2000) Isomerization of citronellal to isopulegol using eclectically engineered sulfated zirconia-carbon molecular sieve composite catalysts, UDCaT-2. Langmuir 16:4072–4079

    CAS  Article  Google Scholar 

  29. Yadav GD, Rahuman MSMM (2002) Cation-exchange resin-catalysed acylations and esterifications in fine chemical and perfumery industries. Org Process Res Dev 6:706–713. doi:10.1021/op0255229

    CAS  Article  Google Scholar 

  30. Yadav GD, Salunke JY (2013) Selectivity engineering of solid base catalysed O-methylation of 2-naphthol with dimethyl carbonate to 2-methoxynaphthalene. Catal Today 207:180–190

    CAS  Article  Google Scholar 

  31. Yadav GD, Surve PS (2013) Solventless green synthesis of 4-O-aryloxy carbonates from aryl/alkyl-oxy propanediols and dimethyl carbonate over nano-crystalline alkali promoted alkaline earth metal oxides. Catal Sci Technol 3:2668–2676

    CAS  Article  Google Scholar 

  32. Yadav GD, Goel PK, Joshi AV (2001) Alkylation of dihydroxybenzenes and anisole with methyl-tert-butyl ether (MTBE) over solid acid catalysts. Green Chem 3:92–99

    CAS  Article  Google Scholar 

Download references


S.L.B. expresses thanks to the UGC for giving basic research (senior) fellowship. G.D.Y. acknowledges support from R. T. Mody Distinguished Professor Endowment of ICT and J. C. Bose National Fellowship of DST-GOI.

Author information



Corresponding author

Correspondence to Ganapati D. Yadav.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 82 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhanawase, S.L., Yadav, G.D. Novel alkali-promoted hydrotalcite for selective synthesis of 2-methoxy phenyl benzoate from guaiacol and benzoic anhydride. Clean Techn Environ Policy 19, 1169–1180 (2017).

Download citation


  • Guaiacol
  • Hydrotalcite
  • Catalyst Loading
  • Aromatic Ketone
  • Potassium Oxide