Skip to main content
Log in

Catalytic peroxidation of recalcitrant quinoline by ceria impregnated granular activated carbon

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

In this work, quinoline (a recalcitrant poly-nuclear aromatic compound) mineralization was studied by catalytic peroxidation process using ceria impregnated granular activated carbon. Various catalysts with different loading of ceria were prepared by wetness impregnation method and further characterized by liquid nitrogen adsorption–desorption technique, X-ray diffraction, scanning electron microscopy, thermo-gravimetric analysis and Fourier transform infrared spectroscopy. Effects of various parameters like ceria loading, pH, catalyst dose (C w), H2O2/quinoline molar ratio, initial concentration (C o) of quinoline, reaction temperature (T) and time on quinoline degradation and chemical oxygen demand (COD) removal efficiencies were studied. Quinoline degradation of 81.6% and COD removal of 86.5% were observed at optimum operating condition of pH = 4, C o = 100 mg/L, Ce loading = 7.5 wt%, H2O2/quinoline molar ratio = 1, C w = 0.5 g/L, T = 55 °C and reaction time = 4 h. The kinetics of the oxidation process was represented by the power law model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad F, Daud WMAW, Ahmad MA, Radzi R (2013) The effects of acid leaching on porosity and surface functional groups of cocoa: (Theobroma cacao)—shell based activated carbon. Chem Eng Res Des 91:1028–1038

    Article  CAS  Google Scholar 

  • Al-Degs YS, El-Barghouthi MI, El-Sheikh AH, Walker GM (2008) Effect of solution pH, ionic strength, and temperature on adsorption behaviour of reactive dyes on activated carbon. Dyes Pigments 77:16–23

    Article  CAS  Google Scholar 

  • Angeles-Hernandez MJ, Leeke GA, Santos RCD (2009) catalytic supercritical water oxidation for the destruction of quinoline over MnO2/CuO mixed catalyst. Ind Eng Chem Res 48:1208–1214

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association) (2001) Standard methods for the examination of water and wastewater, 22nd edn. American Water Works Association and Water Pollution Control Federation, Washington, DC

    Google Scholar 

  • Aravindhan R, Fathima NN, Rao JR, Nair BU (2006) Wet oxidation of acid brown dye by hydrogen peroxide using heterogeneous catalyst Mn-salen-Y zeolite: a potential catalyst. J Hazard Mater 138:152–159

    Article  CAS  Google Scholar 

  • Bautista P, Mohedano AF, Menendez N, Casas JA, Rodriguez JJ (2010) Catalytic wet peroxide oxidation of cosmetic wastewaters with Fe-bearing catalysts. Catal Today 151:148–152

    Article  CAS  Google Scholar 

  • Blanco-Martinez DA, Giraldo L, Moreno-Pirajan JC (2009) Effect of the pH in the adsorption and in the immersion enthalpy of monohydroxylated phenols from aqueous solutions on activated carbons. J Hazard Mater 169:291–296

    Article  CAS  Google Scholar 

  • Borges ME, Hernandez T, Esparza P (2014) Photocatalysis as a potential tertiary treatment of urban wastewater: new photocatalytic materials. Clean Technol Environ Policy 16:431–436

    Article  CAS  Google Scholar 

  • Cailean D, Teodosiu C, Friedl A (2014) Integrated Sono-Fenton ultrafiltration process for 4 chlorophenol removal from aqueous effluents: assessment of operational parameters (Part 1). Clean Technol Environ Policy 16:1145–1160

    Article  CAS  Google Scholar 

  • Cao Q, Yu Q, Connell DW, Yu G (2013) Titania/carbon nanotube composite (TiO2/CNT) and its application for removal of organic pollutants. Clean Technol Environ Policy 15:871–880

    Article  CAS  Google Scholar 

  • Chen LF, Guo PJ, Zhu LJ, Qiao MH, Shen W, Xu HL, Fan KN (2009) Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1,4-butanediol. Appl Catal A 356:129–136

    Article  CAS  Google Scholar 

  • Collin G, Hoke H, Elvers B, Hawkins S, Russey W, Schulz G (1993) Quinoline and isoquinoline. Ullmann’s Encyclopedia of Ind Chem A22:465–469

    Google Scholar 

  • Fathima NN, Aravindhan R, Rao JR, Nair BU (2008) Dye house wastewater treatment through advanced oxidation process using Cu-exchanged Y zeolite: a heterogeneous catalytic approach. Chemosphere 70:1146–1151

    Article  CAS  Google Scholar 

  • Garg S, Srivastava VC, Singh S, Mandal TK (2015) Catalytic degradation of pyrrole in aqueous solution by Cu/SBA-15. Int. J Chem React Eng 13:437–445

    CAS  Google Scholar 

  • Guimaraes IR, Giroto A, Oliveira LCA, Guerreiro MC, Lima DQ, Fabris JD (2009) Synthesis and thermal treatment of cu-doped goethite: oxidation of quinoline through heterogeneous fenton process. Appl Catal B: Environ 91:581–586

    Article  CAS  Google Scholar 

  • Guo Y, Rockstraw DA (2007) Activated carbons prepared from rice hull by one-step phosphoric acid activation. Microporous Mesoporous Mater 100:12–19

    Article  CAS  Google Scholar 

  • Hsueh CL, Huang YH, Wang CC, Chen CY (2005) Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere 58:1409–1414

    Article  CAS  Google Scholar 

  • Hu S, Yao H, Wang K, Lu C, Wu Y (2015) Intensify removal of nitrobenzene from aqueous solution using nano-zero valent iron/granular activated carbon composite as fenton-like catalyst. Water Air Soil Poll 226:155

    Article  Google Scholar 

  • Jadhav AJ, Srivastava VC (2013) Adsorbed solution theory based modeling of binary adsorption of nitrobenzene, aniline and phenol onto granulated activated carbon. Chem Eng J 229:450–459

    Article  CAS  Google Scholar 

  • Jieying J, Li W, Boyd A, Zhang Y, Colvin VL, Yu WW (2012) Photocatalytic degradation of quinoline in aqueous TiO2 suspension. J Hazard Mater 237–238:247–255

    Article  Google Scholar 

  • Lide DR (2005) Dissociation Constants of Organic Acids and Bases. CRC Handbook of Chemistry and Physics, Internet Version 2005, CRC Press, Boca Raton, FL

  • Malmstead JM, Brockman FJ, Valocchi AJ, Rittmann BE (1994) Modelling biofilm biodegradation requiring co-substrate: the quinoline example. In Paper presented at the biological degradation of organic chemical pollutants in bio-film systems, 19–1 May, Copenhagen, Denmark

  • Martins RC, Rossi AF, Quinta-Ferreira RM (2010) Fenton’s oxidation process for phenolic wastewater remediation and biodegradability enhancement. J Hazard Mater 180:716–721

    Article  CAS  Google Scholar 

  • Meijers S, Ponec V (1996) An FTIR spectroscopic study of the selective oxidation of nitrosobenzene to nitrobenzene by metal oxides. J Catal 160:1–9

    Article  CAS  Google Scholar 

  • Muniandy L, Adam F, Mohamed A, Ng EP (2014) The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Micropor Mesopor Mat 197:316–323

    Article  CAS  Google Scholar 

  • Pereira WE, Rostad CE, Garbarino JR, Hult MF (1983) Groundwater contamination by organic bases derived from coal-tar waste. Environ Toxicol Chem 2:283–294

    CAS  Google Scholar 

  • Pinto LDS, Santos LMFD, Al-Duri B, Santos RCD (2006) Supercritical water oxidation of quinoline in a continuous plug flow reactor – part 1: effect of key operating parameters. J Chem Technol Biotechnol 81:912–918

    Article  CAS  Google Scholar 

  • Priyanka, Srivastava VC (2013) Photocatalytic oxidation of dye bearing wastewater by iron doped zinc oxide. Ind Eng Chem Res 52:17790–17799

    Article  CAS  Google Scholar 

  • Priyanka, Subbaramaniah V, Srivastava VC, Mall ID (2014) Catalytic oxidation of nitrobenzene by copper loaded activated carbon. Sep Pur Technol 125:284–290

    Article  CAS  Google Scholar 

  • Rameshraja D, Srivastava VC, Kushwaha JP, Mall ID (2012) Quinoline adsorption onto granular activated carbon and bagasse fly ash. Chem Eng J 181–182:343–351

    Article  Google Scholar 

  • Ryu SH, Yoon WL, Suh IS (2009) Wet co-oxidation of quinoline and phenol. J Korean Ind Eng Chem 20:486–492

    CAS  Google Scholar 

  • Shakir K, Ghoneimy HF, Elkafrawy AF, Beheir SG, Refaat M (2008) Removal of resorcinol from aqueous solutions by adsorption onto organophilic-bentonite. J Hazard Mater 150:765–773

    Article  CAS  Google Scholar 

  • Subbaramaiah V, Srivastava VC, Mall ID (2013a) Catalytic activity of Cu/SBA-15 for peroxidation of pyridine bearing wastewater at atmospheric condition. AIChE J 59:2377–2586

    Article  Google Scholar 

  • Subbaramaiah V, Srivastava VC, Mall ID (2013b) Catalytic wet peroxidation of pyridine bearing wastewater by cerium supported SBA-15. J Hazard Mater 248–249:355–363

    Article  Google Scholar 

  • Subbaramaiah V, Srivastava VC, Mall ID (2013c) Optimization of reaction parameters and kinetic modeling of catalytic wet peroxidation of picoline by Cu/SBA-15. Ind Eng Chem Res 52:9021–9029

    Article  CAS  Google Scholar 

  • Tang WZ, Huang CP (1996) 2, 4-Dichlorophenol oxidation kinetics by Fenton’s reagent. Environ Technol 17:1371–1378

    Article  CAS  Google Scholar 

  • Thomsen AB (1998) Degradation of quinoline by wet oxidation-kinetic aspects and reaction mechanisms. Water Res 32:136–146

    Article  CAS  Google Scholar 

  • Thomsen AB, Kilen HH (1998) Wet oxidation of quinoline: intermediates and by-product toxicity. Wat Res 32:3353–3361

    Article  CAS  Google Scholar 

  • Valentine BRLV, Wang HCA (1998) Iron oxide surface catalyzed oxidation of quinoline by hydrogen peroxide. J Environ Eng 124:31–38

    Article  CAS  Google Scholar 

  • Yawalkar AA, Bhatkhande DS, Pangarkar VG, Beenackers AACM (2001) Solar assisted photocatalytic and photochemical degradation of phenol. J Chem Tech Biotechnol 76:363–370

    Article  CAS  Google Scholar 

  • Zazo JA, Fraile AF, Rey A, Bahamonde A, Casas JA, Rodriguez JJ (2009) Optimizing calcination temperature of Fe/activated carbon catalysts for CWPO. Catal Today 143:341–346

    Article  CAS  Google Scholar 

  • Zhan Y, Li H, Chen Y (2010) Copper hydroxyphosphate as catalyst for the wet hydrogen peroxide oxidation of azo dyes. J Hazard Mater 180:481–485

    Article  CAS  Google Scholar 

  • Zhan Y, Zhou X, Fu B, Chen Y (2011) Catalytic wet peroxide oxidation of azo dye:(Direct Blue 15) using solvothermally synthesized copper hydroxide nitrate as catalyst. J Hazard Mater 187:348–354

    Article  CAS  Google Scholar 

  • Zhang WB, An TC, Xiao XM, Fu JM, Sheng GY, Cui MC (2003) Photochemical degradation performance of quinoline aqueous solution in the presence of hydrogen peroxide. J Environ Sci Health A 38:2599–2611

    Article  Google Scholar 

  • Zhao L, Ma J, Sun Z, Zhai X (2008) Catalytic ozonation for the degradation of nitrobenzene in aqueous solution by ceramic honeycomb-supported manganese. App Catal B: Environ 83:256–264

    Article  CAS  Google Scholar 

  • Zhou J, Xia QH, Shen SC, Kawi S, Hidajat K (2005) Catalytic oxidation of pyridine on the supported copper catalysts in the presence of excess oxygen. J Catal 225:128–137

    Article  Google Scholar 

  • Zou H, Wang S, You H, Wang Z, Wang W (2014) Quinoline degradation and mechanism in catalytic wet peroxide oxidation system. Huagong Xuebao/CIESC J 65:4400–4405

    CAS  Google Scholar 

  • Zrncevic S, Gomzi Z (2005) CWPO: an environmental solution for pollutant removal from wastewater. Ind Eng Chem Res 44:6110–6114

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Department of Science and Technology (DST), India, for providing financial help for carrying out this work under its water technology initiative (WTI) programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal Chandra Srivastava.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2318 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, B., Srivastava, V.C. Catalytic peroxidation of recalcitrant quinoline by ceria impregnated granular activated carbon. Clean Techn Environ Policy 19, 1547–1555 (2017). https://doi.org/10.1007/s10098-016-1315-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1315-8

Keywords

Navigation