Clean Technologies and Environmental Policy

, Volume 19, Issue 3, pp 705–719 | Cite as

Taming the killer in the kitchen: mitigating household air pollution from solid-fuel cookstoves through building design

Original Paper

Abstract

In this study, we attempt to mitigate household air pollution (HAP) through improved kitchen design. Field surveys were conducted in ten kitchens of rural western India, which were then modelled and simulated for dynamic indoor airflow network analysis. The simulated results were statistically clustered using principal component analysis and hierarchical agglomerative clustering, to construct a cumulative built environment parameter called ‘Built Factor’ for each kitchen, and subsequently a derivative matrix was developed. Categorization of better performing kitchens from this derivative matrix enabled in deriving the built parameter thresholds for a ‘better’ kitchen design. This derived kitchen showed 60 % reduction in PM2.5 peak concentration during cooking hours. The evaluation described here is essentially a “proof of concept”, that effective building design can be an alternative way to reduce HAP without the introduction of chimneys, improved cookstoves or shifting to cleaner fuel.

Keywords

Household air pollution Sustainable habitat Solid fuel Built environment Health CFD simulations 

References

  1. Baharvand M, Hamdan M, Ahmad B, Safikhani T, Binti R, Majid A (2013) Design builder verification and validation for indoor natural ventilation. J Basic Appl Sci Res 3(4):182–189Google Scholar
  2. Balakrishnan K, Sambandam S, Ghosh S, Mukhopadhyay K, Vaswani M, Arora NK, Jack D, Pillariseti A, Bates MN, Smith KR (2015) Household air pollution exposures of pregnant women receiving advanced combustion cookstoves in India: implications for intervention. Ann Glob Health 81(3):375–385. doi:10.1016/j.aogh.2015.08.009 CrossRefGoogle Scholar
  3. Bardhan R, Kurisu K, Hanaki K (2015) Does compact urban forms relate to good quality of life in high density cities of India? Case of Kolkata. Cities 48:55–65. doi:10.1016/j.cities.2015.06.005 CrossRefGoogle Scholar
  4. Bhat RY, Manjunath N, Sanjay D, Dhanya Y (2012) Association of indoor air pollution with acute lower respiratory tract infections in children under 5 years of age. Paediatr Int Child Health 32(3):132–135. doi:10.1179/2046905512Y.0000000027 CrossRefGoogle Scholar
  5. Bonet J, Plesu V, Bonet Ruiz AE, Iancu P, Costa J (2014) Use of computer dynamic simulation for indoor exposure assessment based on chronogram incident as air pollution source characterization. Clean Technol Environ Policy 16(5):971–977. doi:10.1007/s10098-013-0679-2 CrossRefGoogle Scholar
  6. Cameron C, Pachauri S, Rao ND, McCollum D, Rogelj J, Riahi K (2016) Policy trade-offs between climate mitigation and clean cook-stove access in South Asia. Nat Energy 1(1):15010. doi:10.1038/nenergy.2015.10 CrossRefGoogle Scholar
  7. Jetter J, Zhao Y, Smith KR, Khan B, Decarlo P, Hays MD, Drive P, Carolina, NS., U. (2012). Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting International Test Standards. Environ Sci Technol 46(19):10827–10834Google Scholar
  8. Census (2011) Provisional population totals. New Delhi, India. Retrieved from censusindia.gov.in. Accessed July 05, 2016
  9. Crawley DB, Lawrie LK, Winkelmann FC, Buhl WF, Huang YJ, Pedersen CO, Strand RK, Liesen RJ, Fisher DE, Witte MJ, Glazer J (2001) EnergyPlus: creating a new-generation building energy simulation program. Energy Build 33(4):319–331. doi:10.1016/S0378-7788(00),00114-6 CrossRefGoogle Scholar
  10. Designbuilder S (2011) DesignBuilder simulation + CFD training guide, 1–224. Retrieved from www.designbuilder.co.uk/downloadsv1/doc/DesignBuilder-Simulation-Training-Manual.pdf
  11. Emenius G, Svartengren M, Korsgaard J, Nordvall L, Pershagen G, Wickman M (2004) Building characteristics, indoor air quality and recurrent wheezing in very young children (BAMSE). Indoor Air 14(1):34–42. doi:10.1046/j.1600-0668.2003.00207.x CrossRefGoogle Scholar
  12. Gan G (2000) Effective depth of fresh air distribution in rooms with single-sided natural ventilation. Energy Build 31(1):65–73. doi:10.1016/S0378-7788(99)00006-7
  13. Guo Z (2000) Simulation tool kit for Indoor Air Quality and Inhalation Exposure (IAQX) Version 1.0 User’s Guide, vol 1. U.S. Environmental Protection Agency, Washington, D.CGoogle Scholar
  14. International Energy Agency (IEA) (2007) World Energy Outlook 2007: China and India Insights. IEA Publications. Retrieved from www.iea.org/publications/freepublications/publication/weo_2007.pdf
  15. Johnson P, Balakrishnan K, Ramaswamy P, Ghosh S, Sadhasivam M, Abirami O, Sathiasekaran BWC, Smith KR, Thanasekaraan V, Subhashini AS (2011) Prevalence of chronic obstructive pulmonary disease in rural women of Tamil Nadu: implications for refining disease burden assessments attributable to household biomass combustion. Glob Health Action 4:7226. doi:10.3402/gha.v4i0.7226 CrossRefGoogle Scholar
  16. Kankaria A, Nongkynrih B, Gupta SK (2014) Indoor air pollution in India: implications on health and its control. Indian J Commun Med 39(4):203–207. doi:10.4103/0970-0218.143019 CrossRefGoogle Scholar
  17. Li Y, Drysdale D (1992) Measurement Of the ignition temperature of wood. AOFST Symposiums 1(4):380–385Google Scholar
  18. Li Y, Leung GM, Tang JW, Yang X, Chao CYH, Lin JZ, Lu JW, Nielsen PV, Niu J, Qian H, Sleigh AC, Su HJJ, Sundell J, Wong TW, Yuen PL (2007) Role of ventilation in airborne transmission of infectious agents in the built environment—a multidisciplinary systematic review. Indoor Air 17(1):2–18. doi:10.1111/j.1600-0668.2006.00445.x CrossRefGoogle Scholar
  19. Mak CM, Yik FWH (2002) A study of natural ventilation in a kitchen using computational fluid dynamics (CFD). Archit Sci Review 45(3):183–190. doi:10.1080/00038628.2002.9697509 CrossRefGoogle Scholar
  20. Maroušek J, Hašková S, Zeman R, Váchal J, Vaníčková R (2015a) Assessing the implications of EU subsidy policy on renewable energy in Czech Republic. Clean Technol Environ Policy 17(2):549–554. doi:10.1007/s10098-014-0800-1 CrossRefGoogle Scholar
  21. Maroušek J, Hašková S, Zeman R, Váchal J, Vaníčková R (2015b) Processing of residues from biogas plants for energy purposes. Clean Technol Environ Policy 17(3):797–801. doi:10.1007/s10098-014-0866-9 CrossRefGoogle Scholar
  22. Mavalankar DV, Trivedi CR, Gray RH (1991) Levels and risk factors for perinatal mortality in Ahmedabad, India. Bull World Health Organ 69(4):435–442Google Scholar
  23. Mishra VK, Retherford RD, Smith KR (1999) Biomass cooking fuels and prevalence of tuberculosis in India. Int J Infect Dis 3(3):119–129CrossRefGoogle Scholar
  24. Murtagh F, Legendre P (2014) Ward’s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion? J Classif 31(October):274–295. doi:10.1007/s00357-014-9161-z CrossRefGoogle Scholar
  25. Nair KC, Bihari V, Pangtey BS, Pathak MK, Fareed M, Mathur N, Srivastava AK (2011) Respiratory health problems associated to infrastructural development among residents living near Special Economic Zone in India. Clean Technol Environ Policy 13(5):697–702. doi:10.1007/s10098-010-0337-x CrossRefGoogle Scholar
  26. Nazaroff WW, Cass GR, Nazarofft WW, Cass GR (1989) Mathematical modeling of indoor aerosol dynamics mathematical modeling of indoor aerosol. Dynamics 23(2):157–166. doi:10.1021/es00179a003 Google Scholar
  27. NBC. (2005). National Building Code of India-2005. Retrieved June 4, 2016, from bis.org.in/sf/nbc.htm
  28. Ruth M, Maggio J, Whelan K, DeYoung M, May J, Peterson A, Paterson K (2014) Kitchen 2.0: Design guidance for healthier cooking environments. Int J Ser Learning Eng Humanitarian Eng Soc Entrep, 151–169. Retrieved from library.queensu.ca/ojs/index.php/ijsle/article/view/5147
  29. Sánchez-Soberón F, Mari M, Kumar V, Rovira J, Nadal M, Schuhmacher M (2015) An approach to assess the Particulate Matter exposure for the population living around a cement plant: Modelling indoor air and particle deposition in the respiratory tract. Environ Res 143:10–18. doi:10.1016/j.envres.2015.09.008 CrossRefGoogle Scholar
  30. Shrimali G, Slaski X, Thurber MC, Zerriffi H (2011) Improved stoves in India: A study of sustainable business models. Energy Policy 39(12):7543–7556. doi:10.1016/j.enpol.2011.07.031 CrossRefGoogle Scholar
  31. Smith KR (2000) National burden of disease in India from indoor air pollution. Proc Natl Acad Sci USA 97(24):13286–13293. doi:10.1073/pnas.97.24.13286 CrossRefGoogle Scholar
  32. Sreeramareddy CT, Shidhaye RR, Sathiakumar N (2011) Association between biomass fuel use and maternal report of child size at birth–an analysis of 2005-06 India Demographic Health Survey data. BMC Public Health 11:403. doi:10.1186/1471-2458-11-403 CrossRefGoogle Scholar
  33. Sundell J, Levin H, Nazaroff WW, Cain WS, Fisk WJ, Grimsrud DT, Gyntelberg F, Li Y, Persily AK, Pickering AC, Samet JM, Spengler JD, Taylor ST, Weschler CJ (2011) Ventilation rates and health: multidisciplinary review of the scientific literature. Indoor Air 21(3):191–204. doi:10.1111/j.1600-0668.2010.00703.x CrossRefGoogle Scholar
  34. Tominaga Y, Mochida A, Yoshie R, Kataoka H, Nozu T, Yoshikawa M, Shirasawa T (2008) AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J Wind Eng Ind Aerodyn 96(10–11):1749–1761. doi:10.1016/j.jweia.2008.02.058 CrossRefGoogle Scholar
  35. Tong Z, Chen Y, Malkawi A, Adamkiewicz G, Spengler JD (2016) Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Environ Int 89–90:138–146. doi:10.1016/j.envint.2016.01.016 CrossRefGoogle Scholar
  36. Urpelainen J, Yoon S (2015) Solar products for poor rural communities as a business : lessons from a successful project in Uttar Pradesh, India. Clean Technol Environ Policy 18(2):617–626. doi:10.1007/s10098-015-1028-4 CrossRefGoogle Scholar
  37. Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics—the finite volume method. Fluid flow handbook. McGraw-Hill, EssexGoogle Scholar
  38. WHO (2014) WHO Guidelines for Indoor Air Quality: household fuel combustion. Geneva: WHO. Retrieved from www.who.int/indoorair/guidelines/hhfc/en/. Accessed July 05, 2016

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ramit Debnath
    • 1
  • Ronita Bardhan
    • 2
  • Rangan Banerjee
    • 3
  1. 1.Centre for Technology Alternative for Rural AreasIIT BombayMumbaiIndia
  2. 2.Centre for Urban Science and EngineeringIIT BombayMumbaiIndia
  3. 3.Department of Energy Science and EngineeringIIT BombayMumbaiIndia

Personalised recommendations