Skip to main content
Log in

A pilot study of three-stage biological–chemical treatment of landfill leachate applying continuous ferric sludge reuse in Fenton-like process

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

This pilot study describes a three-stage continuous process for treating landfill leachate containing significant concentrations of recalcitrant organic substances. The proposed technological scheme consisted of an activated sludge pre-treatment combined with a Fenton-like process enhanced by continuous sludge reuse and followed by an activated sludge post-oxidation. Biological pre-treatment removed >99, 86, >99, 83 and 86 % of BOD7, COD, NH4 +–N, phenols and the sum of lignin and tannins, respectively. Operational conditions in the ferric sludge-catalysed Fenton-like process stage were carefully adjusted in order to maintain the efficacy and practicability of combined treatment scheme. Although the application of ferric sludge as a catalyst in the Fenton-like oxidation reduced COD removal efficiency by 32 % as compared to the conventional Fenton process, lower process efficiency was compensated by reducing the water exchange ratio to 50 % without increasing the consumption of reagents. Moreover, an intermittent addition (added to every second treatment cycle) of fresh ferrous iron catalyst at a H2O2/Fe2+ w/w ratio of 20/1 increased the BOD7/COD ratio from 0.04 to 0.32 and resulted in 60 % COD removal. A cyclic addition (added to every treatment cycle) of the same amount of catalyst increased the BOD7/COD ratio from 0.09 to 0.32, and a 10 % higher COD removal efficiency as compared to intermittent catalyst addition was achieved. Finally, biological post-treatment of the leachate resulted in more than 95 % removal of each measured parameter. Overall, the combined technological scheme with continuous ferric sludge reuse in the Fenton-like stage proved promising alternative for landfill leachate treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BOD7 :

A 7-day biochemical oxygen demand (mg/L)

COD:

Chemical oxygen demand (mg/L)

BOD7/COD:

Biodegradability (ratio of biochemical oxygen demand and chemical oxygen demand)

NH4–N:

Ammonium nitrogen (mg/L)

NO3–N:

Nitrate nitrogen (mg/L)

NO2–N:

Nitrite nitrogen (mg/L)

DO:

Concentration of dissolved oxygen (mgO2/L)

MLSS:

Mixed liquor suspended solids (g/L)

HRT:

Hydraulic retention time (day)

SRT:

Solids retention time (day)

WER:

Water exchange ratio (%)

SVI:

Sludge volume index (mL/g)

SBR:

Sequencing batch reactor

References

  • Abood AR, Bao J, Du J, Zheng D, Luo Y (2014) Non-biodegradable landfill leachate treatment by combined process of agitation, coagulation, SBR and filtration. Waste Manag 34:439–447. doi:10.1016/j.wasman.2013.10.025

    Article  CAS  Google Scholar 

  • Anfruns A, Gabarró J, Gonzalez-Olmos R, Puig S, Balaguer MD, Colprim J (2013) Coupling anammox and advanced oxidation-based technologies for mature landfill leachate treatment. J Hazard Mater 258–259:27–34. doi:10.1016/j.jhazmat.2013.04.027

    Article  Google Scholar 

  • Badawy MI, Wahaab RA, El-Kalliny AS (2009) Fenton-biological treatment processes for the removal of some pharmaceuticals from industrial wastewater. J Hazard Mater 167:567–574. doi:10.1016/j.jhazmat.2009.01.023

    Article  CAS  Google Scholar 

  • Ballesteros Martín MM, Casas López JL, Oller I, Malato S, Sánchez Pérez JA (2010) A comparative study of different tests for biodegradability enhancement determination during AOP treatment of recalcitrant toxic aqueous solutions. Ecotoxicol Environ Saf 73:1189–1195. doi:10.1016/j.ecoenv.2010.07.021

    Article  Google Scholar 

  • Bautista P, Mohedano AF, Casas JA, Zazo JA, Rodriguez JJ (2008) An overview of the application of Fenton oxidation to industrial wastewaters treatment. J Chem Technol Biotechnol 83:1323–1338. doi:10.1002/jctb

    Article  CAS  Google Scholar 

  • Chen Y, Liu C, Nie J, Wu S, Wang D (2014) Removal of COD and decolorizing from landfill leachate by Fenton’s reagent advanced oxidation. Clean Technol Environ Policy 16:189–193. doi:10.1007/s10098-013-0627-1

    Article  CAS  Google Scholar 

  • Deng Y, Englehardt JD (2006) Treatment of landfill leachate by the Fenton process. Water Res 40:3683–3694. doi:10.1016/j.watres.2006.08.009

    Article  CAS  Google Scholar 

  • Dulova N, Trapido M (2011) Application of Fenton’s reaction for food-processing wastewater treatment. J Adv Oxid Technol 12:9–16

    Google Scholar 

  • Fernández FJ, Castro MC, Rodrigo MA, Cañizares P (2011) Reduction of aeration costs by tuning a multi-set point on/off controller: a case study. Control Eng Pract 19:1231–1237. doi:10.1016/j.conengprac.2011.07.003

    Article  Google Scholar 

  • Gao J, Oloibiri V, Chys M, Audenaert W, Decostere B, He Y, Van Langenhove H, Demeestere K, Van Hulle SWH (2014) The present status of landfill leachate treatment and its development trend from a technological point of view. Rev Environ Sci Bio/Technol 14:93–122. doi:10.1007/s11157-014-9349-z

    Article  Google Scholar 

  • Gökkuş Ö (2016) Oxidative degradation of Basic Black 3 by electro-generated Fenton’s reagent using carbon fiber cathode. Clean Technol Environ Policy. doi:10.1007/s10098-016-1134-y

    Google Scholar 

  • Guo J-S, Abbas AA, Chen Y-P, Liu Z-P, Fang F, Chen P (2010) Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process. J Hazard Mater 178:699–705. doi:10.1016/j.jhazmat.2010.01.144

    Article  CAS  Google Scholar 

  • He R, Tian B-H, Zhang Q-Q, Zhang H-T (2015) Effect of Fenton oxidation on biodegradability, biotoxicity and dissolved organic matter distribution of concentrated landfill leachate derived from a membrane process. Waste Manag 38:232–239. doi:10.1016/j.wasman.2015.01.006

    Article  CAS  Google Scholar 

  • Kang KH, Shin HS, Park H (2002) Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Water Res 36:4023–4032. doi:10.1016/S0043-1354(02)00114-8

    Article  CAS  Google Scholar 

  • Karthikeyan S, Titus A, Gnanamani A, Mandal AB, Sekaran G (2011) Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes. Desalination 281:438–445. doi:10.1016/j.desal.2011.08.019

    Article  CAS  Google Scholar 

  • Kavitha V, Palanivelu K (2004) The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere 55:1235–1243. doi:10.1016/j.chemosphere.2003.12.022

    Article  CAS  Google Scholar 

  • Kindsigo M, Kallas J (2008) Wet oxidation of debarking water: changes in lignin content and biodegradability. Environ Chem Lett 7:121–126. doi:10.1007/s10311-008-0144-3

    Article  Google Scholar 

  • Kishimoto N, Kitamura T, Kato M, Otsu H (2013) Reusability of iron sludge as an iron source for the electrochemical Fenton-type process using Fe2+/HOCl system. Water Res 47:1919–1927. doi:10.1016/j.watres.2013.01.021

    Article  CAS  Google Scholar 

  • Klauson D, Kivi A, Kattel E, Klein K, Viisimaa M, Bolobajev J, Velling S, Goi A, Tenno T, Trapido M (2014) Combined process for wastewater purification: treatment of a typical landfill leachate with a combination of chemical and biological oxidation process. J Chem Technol Biotechnol 90:1527–1536. doi:10.1002/jctb.4484

    Article  Google Scholar 

  • Li H-S, Zhou S-Q, Sun Y-B, Feng P, Li J (2009) Advanced treatment of landfill leachate by a new combination process in a full-scale plant. J Hazard Mater 172:408–415. doi:10.1016/j.jhazmat.2009.07.034

    Article  CAS  Google Scholar 

  • Li W, Wang Y, Irini A (2014) Effect of pH and H2O2 dosage on catechol oxidation in nano-Fe3O4 catalyzing UV–Fenton and identification of reactive oxygen species. Chem Eng J 244:1–8. doi:10.1016/j.cej.2014.01.011

    Article  CAS  Google Scholar 

  • Liu C, Li S, Zhang F (2011) The oxygen transfer efficiency and economic cost analysis of aeration system in municipal wastewater treatment plant. Energy Procedia 5:2437–2443. doi:10.1016/j.egypro.2011.03.419

    Article  CAS  Google Scholar 

  • Liu J, Ou C, Faheem, Shen J, Yu H, Jiao Z, Han W, Sun X, Li J, Wang L (2016) Reuse of Fenton sludge as an iron source for NiFe2O4 synthesis and its application in the Fenton-based process. J Environ Sci 1–12. doi: http://dx.doi.org/10.1016/j.jes.2016.05.010

  • Malaeb L, Ayoub GM (2011) Reverse osmosis technology for water treatment: state of the art review. Desalination 267:1–8. doi:10.1016/j.desal.2010.09.001

    Article  CAS  Google Scholar 

  • Meinhold J, Arnold E, Isaacs S (1999) Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge. Water Res 33:1871–1883. doi:10.1016/S0043-1354(98)00411-4

    Article  CAS  Google Scholar 

  • Moradi M, Ghanbari F (2014) Application of response surface method for coagulation process in leachate treatment as pretreatment for Fenton process: biodegradability improvement. J Water Process Eng 4:67–73. doi:10.1016/j.jwpe.2014.09.002

    Article  Google Scholar 

  • Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater 98:33–50. doi:10.1016/S0304-3894(02)00282-0

    Article  CAS  Google Scholar 

  • Ngo H, Guo W, Xing W (2008) Applied technologies in municipal solid waste landfill leachate treatment. Encycl Life Support Syst 1–17

  • Páramo-Vargas J, Granados SG, Maldonado-Rubio MI, Peralta-Hernández JM (2015) Up to 95 % reduction of chemical oxygen demand of slaughterhouse effluents using Fenton and photo-Fenton oxidation. Environ Chem Lett. doi:10.1007/s10311-015-0534-2

    Google Scholar 

  • Paxéus N (2000) Organic compounds in municipal landfill leachates. Water Sci Technol 42:323–333

    Google Scholar 

  • Philips S, Rabaey K, Verstraete W (2003) Impact of iron salts on activated sludge and interaction with nitrite or nitrate. Bioresour Technol 88:229–239. doi:10.1016/S0960-8524(02)00314-0

    Article  CAS  Google Scholar 

  • Rahim Pouran S, Abdul Aziz AR, Wan Daud WMA (2015) Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. J Ind Eng Chem 21:53–69. doi:10.1016/j.jiec.2014.05.005

    Article  CAS  Google Scholar 

  • Segura Y, Martínez F, Melero JA, Fierro JLG (2015) Zero valent iron (ZVI) mediated Fenton degradation of industrial wastewater: treatment performance and characterization of final composites. Chem Eng J 269:298–305. doi:10.1016/j.cej.2015.01.102

    Article  CAS  Google Scholar 

  • Sekaran G, Karthikeyan S, Evvie C, Boopathy R, Maharaja P (2013) Oxidation of refractory organics by heterogeneous Fenton to reduce organic load in tannery wastewater. Clean Technol Environ Policy 15:245–253. doi:10.1007/s10098-012-0502-5

    Article  CAS  Google Scholar 

  • Silva TFCV, Silva MEF, Cunha-Queda AC, Fonseca A, Saraiva I, Sousa MA, Gonçalves C, Alpendurada MF, Boaventura RAR, Vilar VJP (2013) Multistage treatment system for raw leachate from sanitary landfill combining biological nitrification-denitrification/solar photo-Fenton/biological processes, at a scale close to industrial–biodegradability enhancement and evolution profile of trace pol. Water Res 47:6167–6186. doi:10.1016/j.watres.2013.07.036

    Article  CAS  Google Scholar 

  • Silva TFCV, Fonseca A, Saraiva I, Boaventura RAR, Vilar VJP (2016) Scale-up and cost analysis of a photo-Fenton system for sanitary landfill leachate treatment. Chem Eng J 283:76–88. doi:10.1016/j.cej.2015.07.063

    Article  CAS  Google Scholar 

  • Singh SK, Tang WZ (2013) Statistical analysis of optimum Fenton oxidation conditions for landfill leachate treatment. Waste Manag 33:81–88. doi:10.1016/j.wasman.2012.08.005

    Article  CAS  Google Scholar 

  • Srinivasan SV, Prea Samita Mary G, Kalyanaraman C, Sureshkumar PS, Sri Balakameswari K, Suthanthararajan R, Ravindranath E (2012) Combined advanced oxidation and biological treatment of tannery effluent. Clean Technol Environ Policy 14:251–256. doi:10.1007/s10098-011-0393-x

    Article  CAS  Google Scholar 

  • Tijani JO, Fatoba OO, Madzivire G, Petrik LF (2014) A review of combined advanced oxidation technologies for the removal of organic pollutants from water. Water Air Soil Pollut 225:2102. doi:10.1007/s11270-014-2102-y

    Article  Google Scholar 

  • Uygur A, Kargi F (2004) Biological nutrient removal from pre-treated landfill leachate in a sequencing batch reactor. J Environ Manage 71:9–14. doi:10.1016/j.jenvman.2004.01.002

    Article  Google Scholar 

  • Villano M, Scardala S, Aulenta F, Majone M (2013) Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell. Bioresour Technol 130:366–371. doi:10.1016/j.biortech.2012.11.080

    Article  CAS  Google Scholar 

  • Wu Y, Zhou S, Qin F, Peng H, Lai Y, Lin Y (2010) Removal of humic substances from landfill leachate by Fenton oxidation and coagulation. Process Saf Environ Prot 88:276–284. doi:10.1016/j.psep.2010.03.002

    Article  CAS  Google Scholar 

  • Wu Y, Zhou S, Zheng K, Ye X, Qin F (2011) Mathematical model analysis of Fenton oxidation of landfill leachate. Waste Manag 31:468–474. doi:10.1016/j.wasman.2010.09.016

    Article  CAS  Google Scholar 

  • Zhang QQ, Tian BH, Zhang X, Ghulam A, Fang C-R, He R (2013) Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants. Waste Manag 33:2277–2286. doi:10.1016/j.wasman.2013.07.021

    Article  CAS  Google Scholar 

  • Zhou Y, Oehmen A, Lim M, Vadivelu V, Ng WJ (2011) The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants. Water Res 45:4672–4682. doi:10.1016/j.watres.2011.06.025

    Article  CAS  Google Scholar 

  • Zhu R, Wang S, Li J, Wang K, Miao L, Ma B, Peng Y (2013) Biological nitrogen removal from landfill leachate using anaerobic-aerobic process: denitritation via organics in raw leachate and intracellular storage polymers of microorganisms. Bioresour Technol 128:401–408. doi:10.1016/j.biortech.2012.10.063

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the European Union for their financial support through the European Regional Development Fund Project CHEMBIO (code 3.2.0802.11–0043) and to the Estonian Ministry of Education and Research for the institutional research funding IUT20–16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kati Klein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, K., Kivi, A., Dulova, N. et al. A pilot study of three-stage biological–chemical treatment of landfill leachate applying continuous ferric sludge reuse in Fenton-like process. Clean Techn Environ Policy 19, 541–551 (2017). https://doi.org/10.1007/s10098-016-1245-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1245-5

Keywords

Navigation