Skip to main content

Advertisement

Log in

Capture and storage of CO2 into waste phosphogypsum: the modified Merseburg process

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

We evaluated the chemical sequestration of carbon dioxide into the phosphogypsum from the Lowveld region of South Africa. The phosphogypsum was converted to saleable ammonium sulphate and precipitated calcium carbonate in a modified Merseburg process. The heat from the ammonium carbonate formation exothermicity increased the temperature in the gypsum conversion reactor contents by 35 K, significantly reducing the heating requirements to achieve the reaction temperature of 343 K. The modified process will lower capital layout but no fundamental energy superiority or inferiority to the original Merseburg process. The gypsum conversion efficiency of 95 % was achieved. The purity of the ammonium sulphate produced is comparable to the chemical grade, commercially available in South Africa. The calcium carbonate precipitated as calcitic scalenohedral polymorphs with a mean size of 3.4 μm in diameter. The economic feasibility study must be done to determine the cost implication of the omission of the carbon dioxide scrubbing towers in the modified Merseburg process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abidin V, Bouallou C, Clodic D (2011) Valorization of CO2 emissions into ethanol by an innovative process. Chem Eng Trans 25:1–6

    Google Scholar 

  • Alienov DP (1998) Fertilizer manual. Kluwer Academic Publishers, Norwell

    Google Scholar 

  • Al-Jundi J, Al-Ahmad N, Shehadeh H, Afaneh F, Maghrabi M, Gerstmann U (2008) Investigation on the activity concentrations of 238U, 226Ra, 228Ra, 210Pb and 40K in Jordan phosphogypsum and fertilizers. Radiat Prot Dosim 131(4):449–454

    Article  CAS  Google Scholar 

  • Amaya JJ, Doelle K, Mahmud S (2011) A comparative study of different fillers on uncoated eucalyptus digital printing paper properties: a pilot scale approach. Paper Con., p 2941. http://www.tappi.org/content/events/11papercon/documents/Mahmud%20pptA.pdf. Accessed 1 March 2016

  • Atafar Z, Mesdaghinia A, Nouri J, Homaee M, Yunesian M, Ahmadimoghaddam M, Mahvi AH (2010) Effect of fertilizer application on soil heavy metal concentration. Environ Monit Assess 160:83–89

    Article  CAS  Google Scholar 

  • Boden TA, Marland G, Andres RJ (2011) Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge. doi:10.3334/CDIAC/00001_V2011

    Google Scholar 

  • Boden TA, Marland G, Andres RJ (2015) Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge. doi:10.3334/CDIAC/00001_V2015

    Google Scholar 

  • Chou MIM, Bruinius JA, Li YC, Rostam-Abadi M, Lytle JM (1995) Manufacture of ammonium sulfate fertilizer from FGD-gypsum. American Chemical Society Fuel Chem Div., Chicago. http://web.anl.gov/PCS/acsfuel/files. Accessed 20 Feb 2016

  • Chou MIM, Rosam-Abadi M, Lytle JM (1996) Manufacture of ammonium sulfate fertilizer from gypsum-rich by-product of flue gas desulfurisation—a prefeasibility cost estimate. https://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/41_2_NEW%20ORLEANS_03-96_0579.pdf. Accessed 30 Nov 2015

  • Dawson JB, Steele IM, Smith JV, Rivers ML (1996) Minor and trace element chemistry of carbonates, apatites and magnetites in some African carbonatites. Mineral Mag 60:415–425

    Article  CAS  Google Scholar 

  • De Beers (2014) The production of precipitated calcium carbonate from industrial gypsum wastes. Thesis, University of the North West

  • De Villiers JPR (1971) Crystal structures of aragonite, strontianite, and witherite. Am Mineral 56:758–767

    Google Scholar 

  • IHS, Chemical Economic Handbook®, China report. https://www.ihs.com/products/phosphoric-acid-chemical-economics-handbook.html. Accessed 30 Jan 2016

  • Jarosch D, Heger G (1986) Neutron diffraction refinement of the crystal structure of Aragonite. Mineral Petrogr Mitt 35:127–131

    Article  CAS  Google Scholar 

  • Jung WM, Kang SH, Kim W, Choi CK (2000) Particle morphology of calcium carbonate precipitated by gas–liquid reaction in a Couette–Taylor reactor. Chem Eng Sci 55:733–747

    Article  CAS  Google Scholar 

  • Kanniche M, Gros-Bonnivard R, Jaud P, Valle-Marcos J, Amann J-M, Bouallou C (2010) Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl Therm Eng 30:53–62

    Article  CAS  Google Scholar 

  • Kontrec J, Ukrainczyk M, Babic-Ivancic V, Kralj D (2011) Synthesis of calcium carbonate by semi-continuous carbonation method in the presence of dextrans. Croat Chem Acta 84(1):25–32

    Article  CAS  Google Scholar 

  • Kostov I, Kostov RI (2006) Systematics and crystal genesis of carbonate minerals. Geol Geophys 49(1):111–118

    Google Scholar 

  • KPMG (2010) Carbon disclosure project. http://www.cdproject.net. Accessed 1 March 2016

  • Kubota N, Yokota M, Mullin JW (2000) Combined influence of supersaturation and impurity concentration on crystal growth. J Cryst Growth 212:480–488

    Article  CAS  Google Scholar 

  • Li Y, Markley B, Mohan AR, Rodriguez-Santiago V, Thompson D, Niekerk DV (2006) Utilization of carbon dioxide from coal-fired power plant for the production of value-added products. Penn State College of Earth and Mineral Sciences. http://www.ems.psu.edu/~elsworth/courses/egee580/Utilization_final_report.pdf. Accessed 1 March 2016

  • Liske Y, Kapila S, Flanigan V, Nam P, Lorbert S (2001) Production of feedstock chemicals from ammonium sulfate and ammonium bisulfate. J Hazard Subst Res 2:8–11

    Google Scholar 

  • Loffelmann M, Mersmann A (2002) Prediction of crystallization coefficients of the population balance. Chem Eng Sci 57:4301–4310

    Article  CAS  Google Scholar 

  • Mar SS, Okazaki M (2012) Investigation of Cd contents in several phosphate rocks used for the production of fertilizer. Microchem J 104:17–21

    Article  CAS  Google Scholar 

  • Meck ML, Althopeng J, Masamba WRL, Ringrose S, Diskin S (2011) Minerals that host metals at Dorowa Rock Phosphate Mine, Zimbabwe. Open Mineral J 4:20–28

    Google Scholar 

  • Mendes L, de Menderios JL, Alves RMB, Araujo OQF (2014) Production of methanol and organic carbonates for chemical sequestration of CO2 from an NGCC Power Plant. Clean Technol Environ Policy 16:1095–1105. doi:10.1007/s10098-014-0712-0

    CAS  Google Scholar 

  • Michel-Sanchez E (2005) Impact of particle morphology on the rheology of PCC-based coating. Thesis, Georgia Institute of Technology

  • Orisakwe OE, Nduka JK, Amadi CN, Dike DO, Bede O (2012) Heavy metals health risk assessment for population via consumption of food crops and fruits in Owerri, South Eastern, Nigeria. Chem Cent J 6:77–84

    Article  CAS  Google Scholar 

  • Pereira F, Bilal E (2012) Phosphoric acid extraction and rare earth recovery from apatites of the Brazilian phosphatic ore. Rom J Miner Depos 85(2):49–52

    Google Scholar 

  • Piskin S, Ozdemir OD (2012) Effect of process conditions on crystal structure of precipitated calcium carbonate (CaCO3) from fly ash: Na2CO3 preparation conditions. IJBEES 1(6):192–195

    Google Scholar 

  • Rajkovic MB, Toskovic DV (2002) Determination of inorganic compounds in drinking water on the basis of household water heater scale. APTEFF 33:71–92

    Article  CAS  Google Scholar 

  • Reksten K (1990) Superstructures in calcite. Am Mineral 75:807–812

    CAS  Google Scholar 

  • Robinson P (1953) US Patent 2631084A

  • Savci S (2012) An agricultural pollutant chemical fertilizer. Int J Environ Sci Technol 3(1):77–80

    CAS  Google Scholar 

  • Scheetz BE, White B (1977) Vibrational spectra of the alkaline earth double carbonates. Am Mineral 62:36–50

    CAS  Google Scholar 

  • Skinner AJ, LaFemina JP, Jansen HJF (1994) Structure and bonding of calcite, a theoretical study. Am Mineral 79:205–214

    CAS  Google Scholar 

  • Smyth JR (1997) The crystal structure of calcite III. Geophys Res Lett 24(13):1595–1598

    Article  CAS  Google Scholar 

  • Suito K, Namba J, Horikawa T, Taniguchi Y, Sakurai N, Kobayashi M, Onodera A, Shimomura O, Kikegawa T (2001) Phase relations of CaCO3 at high pressure and high temperature. Am Mineral 86:997–1002

    Article  CAS  Google Scholar 

  • Tutus A, Cicekler M, Ozdemir A, Okan TO (2013) Effects of precipitated calcium carbonate (PCC) on optical properties of waste paper. In: International Caucasian forestry symposium, Artvin, Turkey, p 884–887

  • Unkrainczyk M, Kontrec J, Babic-Ivancic V, Brecevic L, Kralj D (2007) Experimental design approach to calcium carbonate precipitation in a semi-continuous process. Powder Technol 171:192–199

    Article  Google Scholar 

  • Vedantham K (2004) Effect of operating parameters on the growth rate of solution grown crystals. Thesis, Mississippi State University

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xolani Msila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Msila, X., Billing, D.G. & Barnard, W. Capture and storage of CO2 into waste phosphogypsum: the modified Merseburg process. Clean Techn Environ Policy 18, 2709–2715 (2016). https://doi.org/10.1007/s10098-016-1157-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1157-4

Keywords

Navigation