Abstract
Waste electrical and electronic equipment (WEEE)—also known as e-waste—is one of the fastest growing problems throughout the world, due to serious future concerns over its management and recycling. These concerns involve the release of persistent toxic substances into the environment and the lack of reliable data about the quantities of waste being generated. Lead acid batteries (LABs) are a type of WEEE with short lifecycles and toxicity. This article proposes a mathematical approach for estimating LAB scrap by combining battery lifespans and car sales data with time series modeling. The results show that the number of vehicle sales grows at a relatively low rate compared to the growth of LAB scrap generation, showing the ripple effect of waste. The main contribution of this proposal is that the time series model can be used to estimate LAB scrap generation data by utilizing car sales data and lifespan estimation.
Similar content being viewed by others
References
Araujo MG, Magrini A, Mahler CF, Bilitewski B (2012) A model for estimation of potential generation of waste electrical and electronic equipment in Brazil. Waste Manag 32:335–342. doi:10.1016/j.wasman.2011.09.020
Basel Convention (1989) http://www.basel.int/TheConvention/Overview/tabid/1271/Default.aspx. Accessed 27 Jan 2016
Bonifazi G, Cossu R (2013) The urban mining concept. Waste Manag 33:497–498. doi:10.1016/j.wasman.2013.01.010
Brazil (2010) National policy for solid waste (NPSW). Law Number 12.305/2010. http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12305.htm. Accessed 22 Sep 2015 (in Portuguese)
Brunner PH (2011) Urban mining: a contribution to reindustrializing the city. J Ind Ecol 15(3):339–341. doi:10.1111/j.1530-9290.2011.00345.x
Chang N-B, Lin YT (1997) An analysis of recycling impacts on solid waste generation by time series intervention modeling. Resour Conserv Recycl 19(3):165–186. doi:10.1016/S0921-3449(96)01187-1
Chang N-B, Pan YC, Huang SD (1993) Time series forecasting of solid waste generation. J Resour Manag Technol 21:1–10
Chen HW, Chang N-B (2000) Prediction of solid waste generation via grey fuzzy dynamic modeling. Resour Conserv Recycl 29:1–18. doi:10.1016/S0921-3449(99)00052-X
Chen L, Xu Z, Liu M, Huang Y, Fan R, Su Y, Hu G, Peng X, Peng X (2012) Lead exposure assessment from study near a lead-acid battery factory in China. Sci Total Environ 429:191–198. doi:10.1016/j.scitotenv.2012.04.015
CIWMB—California Integrated Waste Management Board (2000) Household Hazardous Waste. Publication number 612-00-002. www.ciwmb.ca.gov/Publications/. Accessed 14 Oct 2015
CONAMA –Conselho Nacional de Meio Ambiente (2008) Estabelece os limites máximos de chumbo, cádmio e mercúrio para pilhas e baterias comercializadas no território nacional e os critérios e padrões para o seu gerenciamento ambientalmente adequado, e dá outras providências. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=589. Accessed 22 Sep 2015. (in Portuguese)
Daniel SE, Pappis CP, Voutsinas TG (2003) Applying life cycle inventory to reverse supply chains: a case study of lead recovery from batteries. Resour Conserv Recycl 37:251-/281. doi:10.1016/S0921-3449(02)00070-8
Davis SC, Diegel SW, Boundy RG (2015) Transportation energy data book, edition 34, Center for Transportation Analysis Energy and Transportation Science Division, USA
Dwivedy M, Mittal RK (2010) Estimation of future outflows of e-waste in India. Waste Manag 30(3):483–491. doi:10.1016/j.wasman.2009.09.024
Fiore S, Ruffino B, Zanetti MC (2012) Automobile Shredder Residues in Italy: characterization and valorization opportunities. Waste Manag 32:1548–1559. doi:10.1016/j.wasman.2012.03.026
Freitas CU, Capitani EM, Gouveia N, Simonetti MH, Silva MRP, Kiraf CS, Sakuma AM, Carvalhom MFH, Duran MC, Tiglea P, Abreu MH (2007) Lead exposure in an urban community: investigation of risk factors and assessment of the impact of lead abatement measures. Environ Res 103:338–344. doi:10.1016/j.envres.2006.09.004
Funazaki A, Taneda K, Tahara K, Inaba A (2003) Automobile life cycle assessment issues at end-of-life and recycling. J Soc Automot Eng Rev 24(4):381–386
Gottesfeld P, Pokhre AK (2011) Review: lead exposure in battery manufacturing and recycling in developing countries and among children in nearby communities. J Occup Environ Hyg 8(9):520–532. doi:10.1080/15459624.2011.601710
IBGE—Instituto Brasileiro de Geografia e Estatística (2010) Pesquisa Industrial Annual -PIA http://www.ibge.gov.br/home/estatistica/pesquisas/anos_anteriores_2010.shtm. Accessed 22 Sep 2015 (in Portuguese)
IBRAM—Instituto Brasileiro de Mineração (2008) Informações e análises da economia mineral brasileira. http://www.ibram.org.br/sites/1300/1382/00000284.pdf. Accessed 22 Sep 2015 (in Portuguse)
International Business Publications (2012) Mineral, Mining sector investment and business guide, Volume 1, Strategic information, metals and mineral production, International Business Publications, Washington DC, USA
Jabbour AB, Jabbour CJ, Sarkis J, Govindan K (2014) Brazil’s new national policy on solid waste: challenges and opportunities. Clean Techn Environ Policy 16:7–9. doi:10.1007/s10098-013-0600-z
Jolly R, Rhin C (1994) The recycling of lead-acid batteries: production of lead and polypropylene. Resour Conserv Recycl 10:137–143. doi:10.1016/0921-3449(94)90046-9
Leung A, Cai ZW, Wong MH (2006) Environmental contamination from electronic waste recycling at Guiyu, southeast China. J Mater Cycles Waste Manag 8:21–33. doi:10.1007/s10163-005-0141-6
Liu XB, Tanaka M, Matsui Y (2006) Generation amount prediction and material flow analysis of electronic waste: a case study in Beijing, China. Waste Manag Res 24:434–445. doi:10.1177/0734242X06067449
Lopez NBN, Li J, Wilson B (2015) A study of the geographical shifts in global lead production– a possible corresponding shift in potential threats to the environment. J Clean Prod 107:237–251. doi:10.1016/j.jclepro.2015.04.108
Mao JS, Dong J, Graedel TE (2008) The multilevel cycle of anthropogenic lead II. Results and discussion. Resour Conserv Recycl 52(8–9):1050–1057. doi:10.1016/j.resconrec.2008.04.005
McKenzie E (1984) General exponential smoothing and the equivalent ARMA process. J Forecast 3:333–344. doi:10.1002/for.3980030312
Morettin PA, Toloi CM (2006) Análise de séries temporais, 2ª edição, Blucher, São Paulo. (in Portuguese)
Navarro-Esbri J, Diamadopoulos E, Ginestar D (2002) Time series analysis and forecasting techniques for municipal solid waste management. Resour Conserv Recycl 35:201–214. doi:10.1016/S0921-3449(02)00002-2
Pavlov D (2011) Lead-acid batteries: science and technology—a handbook of lead-acid battery technology and its influence on the product, 1st Edn. Elsevier, New York
Pindyck RS, Rubinfeld DL (1998) Econometric models and economic forecasts. McGraw-Hill Book Company, New York
Robinson B (2009) E-waste: an assessment of global production and environmental impacts. Sci Total Environ 408:183–191. doi:10.1016/j.scitotenv.2009.09.044
Tian X, Gong Y, Wu Y, Agyeiwaa A, Zuo T (2014) Management of used lead acid battery in China: secondary lead industry progress, policies and problems. Resour Conserv Recycl 93:75–84. doi:10.1016/j.resconrec.2014.10.008
USGS—U.S. Geological Survey. Lead, Statistics and Information., http://minerals.usgs.gov/minerals/pubs/commodity/lead/mcs-2015-lead.pdf. Accessed 25 Jan 2016
Van den Bossche P, Vergels F, Van Mierlo J, Matheys J, Van Autenboer W (2006) SUBAT: an assessment of sustainable battery technology. J Power Sources 162:913–919. doi:10.1016/j.jpowsour.2005.07.039
Van der Kuijp T, Huang L, Cherry C (2013) Health hazards of China’s lead-acid battery industry: a review of its market drivers, production processes, and health impacts. Environ Health 12:61. doi:10.1186/1476-069X-12-61
Wath SB, Dutt PS, Chakrabarti T (2011) E-waste scenario in India, its management and implications. Environ Monit Assess 1721:249–262. doi:10.1007/s10661-010-1331-9
Widmer R, Oswald-Krapf H, Sinha-Khetriwal D, Schnellmann M, Boni H (2005) Global perspective on e-waste. Environ Impact Asses 25:436–458. doi:10.1016/j.eiar.2005.04.001
Yaffee RA, McGee M (2000) An introduction to time series analysis and forecasting: with applications of SAS® and SPSS®, 1st Edn. Academic Press, New York
Yang J, Lu B, Xu C (2008) WEEE flow and mitigating measures in China. Waste Manag 28:1589–1597. doi:10.1016/j.wasman.2007.08.019
Zanghelini GM, Cherubini E, Orsi P, Soares S (2014) Waste management Life Cycle Assessment: the case of a reciprocating air compressor in Brazil. J Clean Prod 70:164–174. doi:10.1016/j.jclepro.2014.02.034
Zhang L, Yuan Z, Bi J (2011) Predicting future quantities of obsolete household appliances in Nanjing by a stock-based model. Resour Conserv Recycl 55:1087–1094. doi:10.1016/j.resconrec.2011.06.003
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Neto, J.C., Silva, M.M. & Santos, S.M. A time series model for estimating the generation of lead acid battery scrap. Clean Techn Environ Policy 18, 1931–1943 (2016). https://doi.org/10.1007/s10098-016-1121-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10098-016-1121-3