Clean Technologies and Environmental Policy

, Volume 18, Issue 6, pp 1931–1943 | Cite as

A time series model for estimating the generation of lead acid battery scrap

  • João Cabral Neto
  • Maisa Mendonça Silva
  • Simone Machado Santos
Original Paper


Waste electrical and electronic equipment (WEEE)—also known as e-waste—is one of the fastest growing problems throughout the world, due to serious future concerns over its management and recycling. These concerns involve the release of persistent toxic substances into the environment and the lack of reliable data about the quantities of waste being generated. Lead acid batteries (LABs) are a type of WEEE with short lifecycles and toxicity. This article proposes a mathematical approach for estimating LAB scrap by combining battery lifespans and car sales data with time series modeling. The results show that the number of vehicle sales grows at a relatively low rate compared to the growth of LAB scrap generation, showing the ripple effect of waste. The main contribution of this proposal is that the time series model can be used to estimate LAB scrap generation data by utilizing car sales data and lifespan estimation.


LAB lifespan LAB scrap WEEE forecasting Time series modeling 


  1. Araujo MG, Magrini A, Mahler CF, Bilitewski B (2012) A model for estimation of potential generation of waste electrical and electronic equipment in Brazil. Waste Manag 32:335–342. doi: 10.1016/j.wasman.2011.09.020 CrossRefGoogle Scholar
  2. Basel Convention (1989) Accessed 27 Jan 2016
  3. Bonifazi G, Cossu R (2013) The urban mining concept. Waste Manag 33:497–498. doi: 10.1016/j.wasman.2013.01.010 CrossRefGoogle Scholar
  4. Brazil (2010) National policy for solid waste (NPSW). Law Number 12.305/2010. Accessed 22 Sep 2015 (in Portuguese)
  5. Brunner PH (2011) Urban mining: a contribution to reindustrializing the city. J Ind Ecol 15(3):339–341. doi: 10.1111/j.1530-9290.2011.00345.x CrossRefGoogle Scholar
  6. Chang N-B, Lin YT (1997) An analysis of recycling impacts on solid waste generation by time series intervention modeling. Resour Conserv Recycl 19(3):165–186. doi: 10.1016/S0921-3449(96)01187-1 CrossRefGoogle Scholar
  7. Chang N-B, Pan YC, Huang SD (1993) Time series forecasting of solid waste generation. J Resour Manag Technol 21:1–10Google Scholar
  8. Chen HW, Chang N-B (2000) Prediction of solid waste generation via grey fuzzy dynamic modeling. Resour Conserv Recycl 29:1–18. doi: 10.1016/S0921-3449(99)00052-X CrossRefGoogle Scholar
  9. Chen L, Xu Z, Liu M, Huang Y, Fan R, Su Y, Hu G, Peng X, Peng X (2012) Lead exposure assessment from study near a lead-acid battery factory in China. Sci Total Environ 429:191–198. doi: 10.1016/j.scitotenv.2012.04.015 CrossRefGoogle Scholar
  10. CIWMB—California Integrated Waste Management Board (2000) Household Hazardous Waste. Publication number 612-00-002. Accessed 14 Oct 2015
  11. CONAMA –Conselho Nacional de Meio Ambiente (2008) Estabelece os limites máximos de chumbo, cádmio e mercúrio para pilhas e baterias comercializadas no território nacional e os critérios e padrões para o seu gerenciamento ambientalmente adequado, e dá outras providências. Accessed 22 Sep 2015. (in Portuguese)
  12. Daniel SE, Pappis CP, Voutsinas TG (2003) Applying life cycle inventory to reverse supply chains: a case study of lead recovery from batteries. Resour Conserv Recycl 37:251-/281. doi: 10.1016/S0921-3449(02)00070-8
  13. Davis SC, Diegel SW, Boundy RG (2015) Transportation energy data book, edition 34, Center for Transportation Analysis Energy and Transportation Science Division, USAGoogle Scholar
  14. Dwivedy M, Mittal RK (2010) Estimation of future outflows of e-waste in India. Waste Manag 30(3):483–491. doi: 10.1016/j.wasman.2009.09.024 CrossRefGoogle Scholar
  15. Fiore S, Ruffino B, Zanetti MC (2012) Automobile Shredder Residues in Italy: characterization and valorization opportunities. Waste Manag 32:1548–1559. doi: 10.1016/j.wasman.2012.03.026 CrossRefGoogle Scholar
  16. Freitas CU, Capitani EM, Gouveia N, Simonetti MH, Silva MRP, Kiraf CS, Sakuma AM, Carvalhom MFH, Duran MC, Tiglea P, Abreu MH (2007) Lead exposure in an urban community: investigation of risk factors and assessment of the impact of lead abatement measures. Environ Res 103:338–344. doi: 10.1016/j.envres.2006.09.004 CrossRefGoogle Scholar
  17. Funazaki A, Taneda K, Tahara K, Inaba A (2003) Automobile life cycle assessment issues at end-of-life and recycling. J Soc Automot Eng Rev 24(4):381–386Google Scholar
  18. Gottesfeld P, Pokhre AK (2011) Review: lead exposure in battery manufacturing and recycling in developing countries and among children in nearby communities. J Occup Environ Hyg 8(9):520–532. doi: 10.1080/15459624.2011.601710 CrossRefGoogle Scholar
  19. IBGE—Instituto Brasileiro de Geografia e Estatística (2010) Pesquisa Industrial Annual -PIA Accessed 22 Sep 2015 (in Portuguese)
  20. IBRAM—Instituto Brasileiro de Mineração (2008) Informações e análises da economia mineral brasileira. Accessed 22 Sep 2015 (in Portuguse)
  21. International Business Publications (2012) Mineral, Mining sector investment and business guide, Volume 1, Strategic information, metals and mineral production, International Business Publications, Washington DC, USAGoogle Scholar
  22. Jabbour AB, Jabbour CJ, Sarkis J, Govindan K (2014) Brazil’s new national policy on solid waste: challenges and opportunities. Clean Techn Environ Policy 16:7–9. doi: 10.1007/s10098-013-0600-z CrossRefGoogle Scholar
  23. Jolly R, Rhin C (1994) The recycling of lead-acid batteries: production of lead and polypropylene. Resour Conserv Recycl 10:137–143. doi: 10.1016/0921-3449(94)90046-9 CrossRefGoogle Scholar
  24. Leung A, Cai ZW, Wong MH (2006) Environmental contamination from electronic waste recycling at Guiyu, southeast China. J Mater Cycles Waste Manag 8:21–33. doi: 10.1007/s10163-005-0141-6 CrossRefGoogle Scholar
  25. Liu XB, Tanaka M, Matsui Y (2006) Generation amount prediction and material flow analysis of electronic waste: a case study in Beijing, China. Waste Manag Res 24:434–445. doi: 10.1177/0734242X06067449 CrossRefGoogle Scholar
  26. Lopez NBN, Li J, Wilson B (2015) A study of the geographical shifts in global lead production– a possible corresponding shift in potential threats to the environment. J Clean Prod 107:237–251. doi: 10.1016/j.jclepro.2015.04.108 CrossRefGoogle Scholar
  27. Mao JS, Dong J, Graedel TE (2008) The multilevel cycle of anthropogenic lead II. Results and discussion. Resour Conserv Recycl 52(8–9):1050–1057. doi: 10.1016/j.resconrec.2008.04.005 CrossRefGoogle Scholar
  28. McKenzie E (1984) General exponential smoothing and the equivalent ARMA process. J Forecast 3:333–344. doi: 10.1002/for.3980030312 CrossRefGoogle Scholar
  29. Morettin PA, Toloi CM (2006) Análise de séries temporais, 2ª edição, Blucher, São Paulo. (in Portuguese)Google Scholar
  30. Navarro-Esbri J, Diamadopoulos E, Ginestar D (2002) Time series analysis and forecasting techniques for municipal solid waste management. Resour Conserv Recycl 35:201–214. doi: 10.1016/S0921-3449(02)00002-2 CrossRefGoogle Scholar
  31. Pavlov D (2011) Lead-acid batteries: science and technology—a handbook of lead-acid battery technology and its influence on the product, 1st Edn. Elsevier, New YorkGoogle Scholar
  32. Pindyck RS, Rubinfeld DL (1998) Econometric models and economic forecasts. McGraw-Hill Book Company, New YorkGoogle Scholar
  33. Robinson B (2009) E-waste: an assessment of global production and environmental impacts. Sci Total Environ 408:183–191. doi: 10.1016/j.scitotenv.2009.09.044 CrossRefGoogle Scholar
  34. Tian X, Gong Y, Wu Y, Agyeiwaa A, Zuo T (2014) Management of used lead acid battery in China: secondary lead industry progress, policies and problems. Resour Conserv Recycl 93:75–84. doi: 10.1016/j.resconrec.2014.10.008 CrossRefGoogle Scholar
  35. USGS—U.S. Geological Survey. Lead, Statistics and Information., Accessed 25 Jan 2016
  36. Van den Bossche P, Vergels F, Van Mierlo J, Matheys J, Van Autenboer W (2006) SUBAT: an assessment of sustainable battery technology. J Power Sources 162:913–919. doi: 10.1016/j.jpowsour.2005.07.039 CrossRefGoogle Scholar
  37. Van der Kuijp T, Huang L, Cherry C (2013) Health hazards of China’s lead-acid battery industry: a review of its market drivers, production processes, and health impacts. Environ Health 12:61. doi: 10.1186/1476-069X-12-61 CrossRefGoogle Scholar
  38. Wath SB, Dutt PS, Chakrabarti T (2011) E-waste scenario in India, its management and implications. Environ Monit Assess 1721:249–262. doi: 10.1007/s10661-010-1331-9 CrossRefGoogle Scholar
  39. Widmer R, Oswald-Krapf H, Sinha-Khetriwal D, Schnellmann M, Boni H (2005) Global perspective on e-waste. Environ Impact Asses 25:436–458. doi: 10.1016/j.eiar.2005.04.001 CrossRefGoogle Scholar
  40. Yaffee RA, McGee M (2000) An introduction to time series analysis and forecasting: with applications of SAS® and SPSS®, 1st Edn. Academic Press, New YorkGoogle Scholar
  41. Yang J, Lu B, Xu C (2008) WEEE flow and mitigating measures in China. Waste Manag 28:1589–1597. doi: 10.1016/j.wasman.2007.08.019 CrossRefGoogle Scholar
  42. Zanghelini GM, Cherubini E, Orsi P, Soares S (2014) Waste management Life Cycle Assessment: the case of a reciprocating air compressor in Brazil. J Clean Prod 70:164–174. doi: 10.1016/j.jclepro.2014.02.034 CrossRefGoogle Scholar
  43. Zhang L, Yuan Z, Bi J (2011) Predicting future quantities of obsolete household appliances in Nanjing by a stock-based model. Resour Conserv Recycl 55:1087–1094. doi: 10.1016/j.resconrec.2011.06.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • João Cabral Neto
    • 1
  • Maisa Mendonça Silva
    • 1
  • Simone Machado Santos
    • 1
  1. 1.Technology CenterFederal University of PernambucoCaruaruBrazil

Personalised recommendations