Clean Technologies and Environmental Policy

, Volume 18, Issue 4, pp 1123–1139 | Cite as

A integrated route for CO2 capture in the steel industry and its conversion into CaCO3 using fundamentals of Solvay process

  • P. C. de Carvalho Pinto
  • T. R. da Silva
  • F. M. Linhares
  • F. V. de Andrade
  • M. M. de Oliveira Carvalho
  • G. M. de Lima
Original Paper


In this work we propose the transformation of CO2 into calcium carbonate utilizing steel slag and the waste heat generated in the steel industry. The necessary chemicals, aqueous NH4Cl and solid NaHCO3, were obtained as products of a bench scale Solvay process. Our approach is divided into four steps: (i) CO2 capture using ammoniated brine, (ii) Ca2+ lixiviation from steel slag, through the reaction with NH4Cl(aq), (iii) CaCO3 precipitation by reacting the leachate with NaHCO3, and (iv) NaCl and NH3 reclamation. Steel slag is utilized as the source of calcium. A small amount of heat is required by the overall process, which could be also provided by waste heat from the steel industry. Laboratory scale experiments showed that nearly 95 wt% of NaCl and NH3 necessary for the mineral carbonation can be regenerated, therefore minimizing costs. At the end of this process, 98 wt% pure CaCO3 is obtained, and up to 94 wt% of the extracted Ca2+ was precipitated with no need for pH adjustments. Finally, we observed that, depending on the source of the steel slag, 86 kg of high purity CaCO3 could be obtained from 38 kg of CO2 and 1000 kg of steel slag.

Graphical Abstract


Steel slag Solvay process Mineral carbonation Carbon dioxide CO2 capture 



This work was supported by CNPq, CAPES, and FAPEMIG—Brazil.


  1. Alnouri SY, Linke P, El-Halwagi MM (2014) Water integration in industrial zones: a spatial representation with direct recycle applications. Clean Technol Environ Policy 16:1637–1659CrossRefGoogle Scholar
  2. Azdarpour A, Asadullah M, Mohammadian E et al (2015) A review on carbon dioxide mineral carbonation through pH-swing process. Chem Eng J 279:615–630CrossRefGoogle Scholar
  3. Bak C, Asif M, Kim W (2015) Experimental study on CO2 capture by chilled ammonia process. Chem Eng J 265:1–8CrossRefGoogle Scholar
  4. Baldyga J, Henczka M, Sokolnicka K (2011) Mineral carbonation accelerated by dicarboxylic acids as a disposal process of carbon dioxide. Chem Eng Res Des 89(9):1841–1854CrossRefGoogle Scholar
  5. Bobicki ER, Liu Q, Xu Z et al (2012) Carbon capture and storage using alkaline industrial wastes. Prog Energ Combust 38(2):302–320CrossRefGoogle Scholar
  6. Bodor M, Santos RM, Van Gerven T et al (2013) Recent developments and perspectives on the treatment of industrial wastes by mineral carbonation—a review. Cent Eur J Eng 3(4):566–584Google Scholar
  7. Bonenfant D, Kharoune L, Sauve S et al (2008) CO2 sequestration potential of steel slags at ambient pressure and temperature. Ind Eng Chem Res 47(20):7610–7616CrossRefGoogle Scholar
  8. Bonfils B, Julcour-Lebigue C, Guyot F et al (2012) Comprehensive analysis of direct aqueous mineral carbonation using dissolution enhancing organic additives. Int J Greenh Gas Control 9:334–346CrossRefGoogle Scholar
  9. Calado V (2003) Planejamento de Experimentos usando o Statistica. Editora E-papersGoogle Scholar
  10. Chang E, Chen C, Chen Y et al (2011) Performance evaluation for carbonation of steel-making slags in a slurry reactor. J Hazard Mater 186(1):558–564CrossRefGoogle Scholar
  11. Darde V, van Well WJ, Stenby EH et al (2011) CO2 capture using aqueous ammonia: kinetic study and process simulation. Energy Procedia 4:1443–1450CrossRefGoogle Scholar
  12. Das B, Prakash S, Reddy P et al (2007) An overview of utilization of slag and sludge from steel industries. Resour Conserv Recycl 50(1):40–57CrossRefGoogle Scholar
  13. de Carvalho Pinto P, de Oliveira Carvalho M, Linhares F et al (2015) A cleaner production of sodium hydrogen carbonate: partial replacement of lime by steel slag milk in the ammonia recovery step of the Solvay process. Clean Techn Environ Policy 17:2311–2321CrossRefGoogle Scholar
  14. Dlugogorski BZ, Balucan RD (2014) Dehydroxylation of serpentine minerals: Implications for mineral carbonation. Renew Sustain Energy Rev 31:353–367CrossRefGoogle Scholar
  15. Dri M, Sanna A, Maroto-Valer MM (2013) Dissolution of steel slag and recycled concrete aggregate in ammonium bisulphate for CO2 mineral carbonation. Fuel Process Technol 113:114–122CrossRefGoogle Scholar
  16. Eloneva S, Mannisto P, Said A et al (2011) Ammonium salt-based steelmaking slag carbonation: precipitation of CaCO3 and ammonia losses assessment. Greenh Gases Sci Technol 1(4):305–311CrossRefGoogle Scholar
  17. Eloneva S, Said A, Fogelholm C et al (2012) Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate. Appl Energy 90(1):329–334CrossRefGoogle Scholar
  18. EPE—Empresa de Pesquisa Energética (2009) Caracterização do uso da Energia no Setor Siderúrgico Brasileiro Nota Técnica DEA 02/09Google Scholar
  19. Galan I, Glasser FP, Andrade C (2013) Calcium carbonate decomposition. J Therm Anal Calorim 111(2):1197–1202CrossRefGoogle Scholar
  20. Geerlings H, Zevenhoven R (2013) CO2 mineralization-bridge between storage and utilization of CO2. Annu Rev Chem Biomol Eng 4:103–117CrossRefGoogle Scholar
  21. Gielen D, Moriguchi Y (2002) CO2 in the iron and steel industry: an analysis of Japanese emission reduction potentials. Energy Policy 30(10):849–863CrossRefGoogle Scholar
  22. Gutiérrez-Arriaga CG, Abdelhady F, Bamufleh HS, Serna-González M, El-Halwagi MM, Ponce-Ortega JM (2015) Industrial waste heat recovery and cogeneration involving organic Rankine cycles. Clean Technol Environ Policy 17:767–779CrossRefGoogle Scholar
  23. Hall C, Large D, Adderley B et al (2014) Calcium leaching from waste steelmaking slag: significance of leachate chemistry and effects on slag grain mineralogy. Miner Eng 65:156–162CrossRefGoogle Scholar
  24. Han K, Ahn CK, Lee MS et al (2013) Current status and challenges of the ammonia-based CO2 capture technologies toward commercialization. Int J Greenh Gas Control 14:270–281CrossRefGoogle Scholar
  25. Han K, Ahn CK, Lee MS (2014) Performance of an ammonia-based CO2 capture pilot facility in iron and steel industry. Int J Greenh Gas Control 27:239–246CrossRefGoogle Scholar
  26. Huang H, Shi Y, Li W et al (2001) Dual alkali approaches for the capture and separation of CO2. Energy Fuels 15(2):263–268CrossRefGoogle Scholar
  27. Huijgen WJ, Comans RN (2006) Carbonation of steel slag for CO2 sequestration: leaching of products and reaction mechanisms. Environ Sci Technol 40(8):2790–2796CrossRefGoogle Scholar
  28. IEA (International Energy Agency) (2013a) Global action to advance carbon capture and storage—A focus on industrial applicationsGoogle Scholar
  29. IEA (International Energy Agency) (2013b) Technology Roadmap—Carbon capture and storageGoogle Scholar
  30. IEA (International Energy Agency) (2014) CO2 Emissions from Fuel Combustion 2014—HighlightsGoogle Scholar
  31. Jing Z, Liu Gd, Hang G, Lian L, Shi-huai D (2013) A theoretical basis for the relationship between the industrial pollutant generation, abatement, emission and economy. Clean Technol Environ Policy 15:707–711CrossRefGoogle Scholar
  32. Jo HY, Kim JH, Lee YJ et al (2012) Evaluation of factors affecting mineral carbonation of CO2 using coal fly ash in aqueous solutions under ambient conditions. Chem Eng J 183:77–87CrossRefGoogle Scholar
  33. Jones CW (2011) CO2 capture from dilute gases as a component of modern global carbon management. Annu Rev Chem Biomol Eng 2:31–52CrossRefGoogle Scholar
  34. Kasikowski T, Buczkowski R, Lemanowska E (2004) Cleaner production in the ammonia–soda industry: an ecological and economic study. J Environ Manag 73(4):339–356CrossRefGoogle Scholar
  35. Kelly K, Silcox G, Sarofim A et al (2011) An evaluation of ex situ, industrial-scale, aqueous CO2 mineralization. Int J Greenh Gas Control 5(6):1587–1595CrossRefGoogle Scholar
  36. Kim JY, Han K, Ahn CK et al (2013) Operating cost for CO2 capture process using aqueous ammonia. Energy Procedia 37:677–682CrossRefGoogle Scholar
  37. Kirchofer A, Brandt A, Krevor S et al (2012) Impact of alkalinity sources on the life-cycle energy efficiency of mineral carbonation technologies. Energy Environ Sci 5(9):8631–8641CrossRefGoogle Scholar
  38. Kirchofer A, Becker A, Brandt A et al (2013) CO2 mitigation potential of mineral carbonation with industrial alkalinity sources in the United States. Environ Sci Technol 47(13):7548–7554Google Scholar
  39. Kodama S, Nishimoto T, Yamamoto N et al (2008) Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution. Energy 33(5):776–784CrossRefGoogle Scholar
  40. López-Periago AM, Pacciani R, Vega LF et al (2011) Monitoring the effect of mineral precursor, fluid phase CO2–H2O composition, and stirring on CaCO3 crystallization in a supercritical-ultrasound carbonation process. Crys Growth Des 11(12):5324–5332CrossRefGoogle Scholar
  41. Ma S, Song H, Wang M et al (2013) Research on mechanism of ammonia escaping and control in the process of CO2 capture using ammonia solution. Chem Eng Res Des 91(7):1327–1334CrossRefGoogle Scholar
  42. Ma S, Chen G, Guo M et al (2014) Path analysis on CO2 resource utilization based on carbon capture using ammonia method in coal-fired power plants. Renew Sustain Energy Rev 37:687–697CrossRefGoogle Scholar
  43. Mattila H, Grigaliūnaitė I, Zevenhoven R (2012) Chemical kinetics modeling and process parameter sensitivity for precipitated calcium carbonate production from steelmaking slags. Chem Eng J 192:77–89CrossRefGoogle Scholar
  44. Montes-Hernandez G, Perez-Lopez R, Renard F et al (2009) Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. J Hazard Mater 161(2):1347–1354CrossRefGoogle Scholar
  45. Morone M, Costa G, Polettini A et al (2014) Valorization of steel slag by a combined carbonation and granulation treatment. Miner Eng 59:82–90CrossRefGoogle Scholar
  46. Niu Z, Guo Y, Zeng Q et al (2013) A novel process for capturing carbon dioxide using aqueous ammonia. Fuel Process Technol 108:154–162CrossRefGoogle Scholar
  47. Olajire AA (2013) A review of mineral carbonation technology in sequestration of CO2. J Pet Sci Eng 109:364–392CrossRefGoogle Scholar
  48. Pan S, Chang E, Chiang P (2012) CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol Air Qual Res 12(5):770–791Google Scholar
  49. Pan S, Chiang P, Chen Y et al (2013a) Systematic approach to determination of maximum achievable capture capacity via leaching and carbonation processes for alkaline steelmaking wastes in a rotating packed bed. Environ Sci Technol 47(23):13677–13685CrossRefGoogle Scholar
  50. Pan S, Chiang P, Chen Y et al (2013b) Ex situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed. Environ Sci Technol 47(7):3308–3315Google Scholar
  51. Pan S, Chiang A, Chang E et al (2015) An innovative approach to integrated carbon mineralization and waste utilization: a review. Aerosol Air Qual Res 15:1072–1091Google Scholar
  52. Pardo N, Moya JA (2013) Prospective scenarios on energy efficiency and CO2 emissions in the European iron & steel industry. Energy 54:113–128CrossRefGoogle Scholar
  53. Renforth P, Washbourne C, Taylder J et al (2011) Silicate production and availability for mineral carbonation. Environ Sci Technol 45(6):2035–2041CrossRefGoogle Scholar
  54. Rhee CH, Kim JY, Han K et al (2011) Process analysis for ammonia-based CO2 capture in ironmaking industry. Energy Procedia 4:1486–1493CrossRefGoogle Scholar
  55. Said A, Mattila HP, Jarvinen M, Zevenhoven R (2013) Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2. Appl Energy 112:765–771CrossRefGoogle Scholar
  56. Said A, Mattila O, Eloneva S et al (2015) Enhancement of calcium dissolution from steel slag by ultrasound. Chem Eng Process 89:1–8CrossRefGoogle Scholar
  57. Sanna A, Hall MR, Maroto-Valer M (2012) Post-processing pathways in carbon capture and storage by mineral carbonation (CCSM) towards the introduction of carbon neutral materials. Energy Environ Sci 5(7):7781–7796CrossRefGoogle Scholar
  58. Sanna A, Uibu M, Caramanna G et al (2014) A review of mineral carbonation technologies to sequester CO2. Chem Soc Rev 43(23):8049–8080CrossRefGoogle Scholar
  59. Santos RM, Van Bouwel J, Vandevelde E et al (2013) Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: effect of process parameters on geochemical properties. Int J Greenh Gas Control 17:32–45CrossRefGoogle Scholar
  60. Shi C (2004) Steel slag—its production, processing, characteristics, and cementitious properties. J Mater Civ Eng 16:230–236CrossRefGoogle Scholar
  61. Steinhauser G (2008) Cleaner production in the Solvay process: general strategies and recent developments. J Clean Prod 16(7):833–841CrossRefGoogle Scholar
  62. Sun Y, Yao M, Zhang J et al (2011) Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution. Chem Eng J 173(2):437–445CrossRefGoogle Scholar
  63. Tanaka K (2012) A comparison study of EU and Japan methods to assess CO2 emission reduction and energy saving in the iron and steel industry. Energy Policy 51:578–585CrossRefGoogle Scholar
  64. Tans P, Keeling R (2015) NOAA/ESRL—trends in atmospheric carbon dioxide.
  65. Teir S, Eloneva S, Fogelholm C et al (2007) Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production. Energy 32(4):528–539CrossRefGoogle Scholar
  66. Tian S, Jiang J, Li K et al (2014) Performance of steel slag in carbonation–calcination looping for CO2 capture from industrial flue gas. RSC Adv 4(14):6858–6862CrossRefGoogle Scholar
  67. Trypuć M, Białowicz K (2011) CaCO3 production using liquid waste from Solvay method. J Clean Prod 19(6):751–756CrossRefGoogle Scholar
  68. Versteeg P, Rubin ES (2011) Technical and economic assessment of ammonia-based post-combustion CO2 capture. Energy Procedia 4:1957–1964CrossRefGoogle Scholar
  69. Wang X, Maroto-Valer MM (2011) Integration of CO2 capture and mineral carbonation by using recyclable ammonium salts. ChemSusChem 4(9):1291–1300CrossRefGoogle Scholar
  70. Wang K, Wang C, Lu X et al (2007) Scenario analysis on CO2 emissions reduction potential in China’s iron and steel industry. Energy Policy 35(4):2320–2335CrossRefGoogle Scholar
  71. World Steel Association (2015) Steel’s contribution to a low carbon future and climate resilient societies—world steel position paperGoogle Scholar
  72. Wszelaka-Rylik M, Piotrowska K, Gierycz P (2015) Simulation, aggregation and thermal analysis of nanostructured calcite obtained in a controlled multiphase process. J Therm Anal Calorim 119(2):1323–1338CrossRefGoogle Scholar
  73. Yang N, Yu H, Li L et al (2014) Aqueous ammonia (NH3) based post combustion CO2 capture: a review. Oil Gas Sci Technol 69(5):931–945CrossRefGoogle Scholar
  74. Yu J, Wang K (2011) Study on characteristics of steel slag for CO2 capture. Energy Fuels 25(11):5483–5492CrossRefGoogle Scholar
  75. Yu H, Morgan S, Allport A et al (2011) Results from trialling aqueous ammonia based post combustion capture in a pilot plant at Munmorah. Energy Procedia 4:1294–1302CrossRefGoogle Scholar
  76. Zhang Y, Dawe RA (2000) Influence of Mg2+ on the kinetics of calcite precipitation and calcite crystal morphology. Chem Geol 163(1):129–138CrossRefGoogle Scholar
  77. Zhang H, Wang H, Zhu X et al (2013) A review of waste heat recovery technologies towards molten slag in steel industry. Appl Energy 112:956–966CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • P. C. de Carvalho Pinto
    • 1
  • T. R. da Silva
    • 1
  • F. M. Linhares
    • 1
  • F. V. de Andrade
    • 1
  • M. M. de Oliveira Carvalho
    • 2
    • 3
  • G. M. de Lima
    • 1
  1. 1.Departamento de QuímicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Lappeenranta University of TechnologyLappeenrantaFinland
  3. 3.Departamento de Engenharia QuímicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations