Skip to main content

Advertisement

Log in

Parametric study of co-gasification of ternary blends of rice straw, polyethylene and polyvinylchloride

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Parametric study of co-gasification of rice straw (RS), high-density polyethylene (PE) and Polyvinylchloride (PVC) was carried out to investigate the effect of temperature, flow rate of steam, typical plastics and their blends on the quality and volume of synthetic gas. The additions of plastic enhance H2 content in the synthetic gas. The study found that increase in temperature increases the yield of synthetic gas, H2 and CO content and lower heating value (LHV) of synthetic gas. The steam to biomass ratio seems to have a very small effect on gas composition. Likewise the increase in PE content in the feed blend increases the hydrogen content and gas yield. Similar results were obtained by increasing PVC content. Co-gasification experiments of ternary blends of RS, PE and PVC were also conducted. The ternary blends of 20 % RS, 40 % PE, 40 % PVC produced synthetic gas with higher H2 content, higher synthetic gas production rate and higher LHV of synthetic gas. This work confirms that synergistic interactive effect takes place during the co-gasification of ternary blends of PE, PVC and RS due to volatile-char interaction and mineral catalytic effects. This work also suggests that carefully designed co-gasification unit can handle waste with varying composition of biomass and plastic to produce improved quantity as well as quality of synthetic gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aguado J, Serrano DP, Clark JH (1999) Gasification and partial oxidation. In: Aguado J, Serrano DP, Clark JH (eds) Feedstock Recycling of Plastic Wastes. The Royal Society of Chemistry, Cambridge, pp 59–72

    Chapter  Google Scholar 

  • Ahmed II, Nipattummakul N, Gupta AK (2011) Characteristics of syngas from co-gasification of polyethylene and woodchips. Appl Energy 88(1):165–174

    Article  CAS  Google Scholar 

  • Anand S, Gupta A, Tyagi S (2014) Critical analysis of a biogas powered absorption system for climate change mitigation. Clean Technol Environ Policy 16(3):569–578

    Article  CAS  Google Scholar 

  • Aznar MP, Caballero MA, Sancho JA, Francés E (2006) Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant. Fuel Process Technol 87(5):409–420

    Article  CAS  Google Scholar 

  • Bhutto AW, Bazmi AA, Zahedi G (2013) Underground coal gasification: from fundamentals to applications. Prog Energy Combust Sci 39(1):189–214

    Article  CAS  Google Scholar 

  • Bläsing M, Weigand M, Fasenacht J, Müller M (2015) Effect of temperature and oxygen content on the release of organic and inorganic species during high temperature thermochemical conversion of PVC-condensate. Fuel Process Technol 134:85–91

    Article  Google Scholar 

  • Brau J-F, Morandin M, Berntsson T (2013) Hydrogen for oil refining via biomass indirect steam gasification: energy and environmental targets. Clean Technol Environ Policy 15(3):501–512

    Article  CAS  Google Scholar 

  • Conesa JA, Font R, Marcilla A (1997) Comparison between the pyrolysis of two types of polyethylenes in a fluidized bed reactor. Energy Fuels 11(1):126–136

    Article  CAS  Google Scholar 

  • Demirbaş A (2001) Yields of hydrogen-rich gaseous products via pyrolysis from selected biomass samples. Fuel 80(13):1885–1891

    Article  Google Scholar 

  • Devi L, Ptasinski KJ, Janssen FJJG (2003) A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 24(2):125–140

    Article  CAS  Google Scholar 

  • Erkiaga A, Lopez G, Amutio M, Bilbao J, Olazar M (2013) Syngas from steam gasification of polyethylene in a conical spouted bed reactor. Fuel 109:461–469

    Article  CAS  Google Scholar 

  • Franco C, Pinto F, Gulyurtlu I, Cabrita I (2003) The study of reactions influencing the biomass steam gasification process. Fuel 82(7):835–842

    Article  CAS  Google Scholar 

  • Gai C, Dong Y (2012) Experimental study on non-woody biomass gasification in a downdraft gasifier. Int J Hydrogen Energy 37(6):4935–4944

    Article  CAS  Google Scholar 

  • Gonçalves CK, Tenório JAS, Levendis YA, Carlson JB (2008) Emissions from the premixed combustion of gasified polyethylene. Energy Fuels 22(1):372–381

    Article  Google Scholar 

  • Howaniec N, Smoliński A, Stańczyk K, Pichlak M (2011) Steam co-gasification of coal and biomass derived chars with synergy effect as an innovative way of hydrogen-rich gas production. Int J Hydrogen Energy 36(22):14455–14463

    Article  CAS  Google Scholar 

  • Hu M, Guo D, Ma C, Luo S, Chen X, Cheng Q, Laghari M, Xiao B (2015) A novel pilot-scale production of fuel gas by allothermal biomass gasification using biomass micron fuel (BMF) as external heat source. Clean Technol Environ Policy, 1–9

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098

    Article  CAS  Google Scholar 

  • Igliński B, Piechota G, Buczkowski R (2014) Development of biomass in polish energy sector: an overview. Clean Technol Environ Policy 17(2):317–329

    Article  Google Scholar 

  • Kannan P, Al Shoaibi A, Srinivasakannan C (2014) Temperature effects on the yield of gaseous olefins from waste polyethylene via flash pyrolysis. Energy Fuels 28(5):3363–3366

    Article  CAS  Google Scholar 

  • Kaufman Rechulski MD, Schneebeli J, Geiger S, Schildhauer TJ, Biollaz SMA, Ludwig C (2012) Liquid-Quench sampling system for the analysis of gas streams from biomass gasification processes. Part 1: sampling noncondensable compounds. Energy Fuels 26(12):7308–7315

    Article  CAS  Google Scholar 

  • Kumagai S, Hasegawa I, Grause G, Kameda T, Yoshioka T (2015) Thermal decomposition of individual and mixed plastics in the presence of CaO or Ca(OH)2. J Anal Appl Pyrol 113:584–590

    Article  CAS  Google Scholar 

  • Kuo PC, Wu W, Chen WH (2014) Gasification performances of raw and torrefied biomass in a downdraft fixed bed gasifier using thermodynamic analysis. Fuel 117:1231–1241

    Article  CAS  Google Scholar 

  • Lapuerta M, Hernández JJ, Pazo A, López J (2008) Gasification and co-gasification of biomass wastes: effect of the biomass origin and the gasifier operating conditions. Fuel Process Technol 89(9):828–837

    Article  CAS  Google Scholar 

  • Li C, Suzuki K (2009) Tar property, analysis, reforming mechanism and model for biomass gasification—an overview. Renew Sustain Energy Rev 13(3):594–604

    Article  CAS  Google Scholar 

  • Lv PM, Xiong ZH, Chang J, Wu CZ, Chen Y, Zhu JX (2004) An experimental study on biomass air–steam gasification in a fluidized bed. Bioresour Technol 95(1):95–101

    Article  CAS  Google Scholar 

  • Ma S, Lu J, Gao J (2002) Study of the Low Temperature Pyrolysis of PVC. Energy Fuels 16(2):338–342

    Article  CAS  Google Scholar 

  • Nizamuddin S, Kumar J, Subramanian N, Sahu JN, Ganesan P, Mubarak NM, Mazari SA (2015a) Synthesis and characterization of hydrochars produced by hydrothermal carbonization of oil palm shell. Can J Chem Eng 93(11):1916–1921

    Article  CAS  Google Scholar 

  • Nizamuddin S, Subramanian N, Kumar J, Sahu JN, Ganesan P, Bhutto AW, Mubarak NM (2015b) Hydrothermal carbonization of oil palm shell. Korean J Chem Eng 32(9):1789–1797

    Article  CAS  Google Scholar 

  • Parthasarathy P, Narayanan KS (2014) Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield – A review. Renew Energy 66:570–579

    Article  CAS  Google Scholar 

  • Pinto F, Franco C, André RN, Miranda M, Gulyurtlu I, Cabrita I (2002) Co-gasification study of biomass mixed with plastic wastes. Fuel 81(3):291–297

    Article  CAS  Google Scholar 

  • Pinto F, Franco C, André RN, Tavares C, Dias M, Gulyurtlu I, Cabrita I (2003) Effect of experimental conditions on co-gasification of coal, biomass and plastics wastes with air/steam mixtures in a fluidized bed system. Fuel 82(15–17):1967–1976

    Article  CAS  Google Scholar 

  • Pohořelý M, Vosecký M, Hejdová P, Punčochář M, Skoblja S, Staf M, Vošta J, Koutský B, Svoboda K (2006) Gasification of coal and PET in fluidized bed reactor. Fuel 85(17–18):2458–2468

    Article  Google Scholar 

  • Prasad L, Salvi B, Kumar V (2015) Thermal degradation and gasification characteristics of Tung Shells as an open top downdraft wood gasifier feedstock, Clean Technol Environ Policy, 1–8

  • Puig-Arnavat M, Bruno JC, Coronas A (2010) Review and analysis of biomass gasification models. Renew Sustain Energy Rev 14(9):2841–2851

    Article  CAS  Google Scholar 

  • Umeki K, Namioka T, Yoshikawa K (2012) The effect of steam on pyrolysis and char reactions behavior during rice straw gasification. Fuel Process Technol 94(1):53–60

    Article  CAS  Google Scholar 

  • Wilk V, Hofbauer H (2013) Co-gasification of plastics and biomass in a dual fluidized-bed steam gasifier: possible interactions of fuels. Energy Fuels 27(6):3261–3273

    Article  CAS  Google Scholar 

  • Yang T, Hu K, Li R, Sun Y, Kai X (2015) Cogasification of typical plastics and rice straw with carbon dioxide. Environ Progr Sustain Energy 34(3):789–794

    Article  CAS  Google Scholar 

  • Yuan G, Chen D, Yin L, Wang Z, Zhao L, Wang JY (2014) High efficiency chlorine removal from polyvinyl chloride (PVC) pyrolysis with a gas–liquid fluidized bed reactor. Waste Manag 34(6):1045–1050

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge a research grant support by the National Natural Science Foundation of China (51176130).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianhua Yang or Abdul Waheed Bhutto.

Ethics declarations

Conflict of interest

We have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baloch, H.A., Yang, T., Li, R. et al. Parametric study of co-gasification of ternary blends of rice straw, polyethylene and polyvinylchloride. Clean Techn Environ Policy 18, 1031–1042 (2016). https://doi.org/10.1007/s10098-016-1092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1092-4

Keywords

Navigation