Skip to main content

Advertisement

Log in

Performance analysis of a continuous bioreactor for ethanol and acetate synthesis from syngas via Clostridium ljungdahlii using exergy concept

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

In this paper, the exergetic performance of a continuous bioreactor for ethanol and acetate synthesis from syngas via a strictly anaerobic autotrophic bacterium Clostridium ljungdahlii was carried out for the first time. The fermentation process was evaluated using both conventional exergy and eco-exergy principles for measuring the productivity and renewability of the process at various liquid media flow rates. The microorganisms successfully upgraded the syngas into invaluable ethanol and acetate through the Wood–Ljungdahl pathway. The exergy efficiency was found to be in the range of 6.5–77.5 and 6.8–77.5 % during the fermentation using conventional exergy and eco-exergy concepts, respectively. The subtle differences observed in the exergetic parameters using the two exergetic concepts were ascribed to the slow growth rate of the microorganisms. Nevertheless, the eco-exergy concept would strongly be recommended for commercial bioreactor containing living organisms due to the inclusion of the information carried by microorganisms in the exergetic calculation. A desired liquid media flow rate of 0.55 mL/min was found according to a newly defined thermodynamic indictor namely exergetic productivity index. More specifically, the maximum exergetic productivity index of the fermentation process was found to be 8.0 using both approaches when the rate of inflow liquid was adjusted at the optimal value. The results of this study revealed that process yield alone cannot be a reliable performance metric for decision making on the productivity of various biofuel production pathways. Finally, the proposed exergetic framework could assist engineers and researchers to link biochemical and physical knowledge more robustly and to quantify and elucidate the general purpose of productivity and renewability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

C :

Specific heat (kJ/kg K)

D:

Impeller diameter (m)

ex:

Specific exergy (kJ/kg)

Ex:

Exergy (kJ)

\({\dot{\text{E}}\text{x}}\) :

Exergy rate (kJ/s)

G :

Gibbs function for the reaction

m :

Mass (kg)

\(\dot{m}\) :

Mass flow rate (kg/s)

M :

Molecular mass (kg/mol)

n :

Mole number (−)

\(\dot{n}\) :

Mole rate (mol/s)

N :

Impeller speed (rpm)

NN:

Number of nucleotides (−)

NRG:

Number of repeating genes (−)

\({\mathbb{N}}\) :

Power number (−)

P :

Pressure (kPa)

R :

Gas constant (8.314 J/(mol K))

Re:

Reynolds number (−)

SI:

Exergetic sustainability index

T :

Temperature (K)

x :

Mole fraction (−)

X :

Mass fraction (−)

W :

Mechanical work (kW)

ε :

Standard chemical exergy (kJ/mol)

β :

Eco-exergy to the chemical exergy ratio

ρ :

Fluid density (kg/m3)

μ :

Fluid viscosity (Pa s)

ψ :

Rational exergy efficiency

Ψ :

Exergetic productivity index

0:

Dead state

Ace:

Acetate

CM:

Culture media

des:

Destruction

EthOH:

Ethanol

in:

Inlet

i, j, k, l, m, n :

Numerators

LM:

Liquid media

Out:

Outlet

P :

Product

R :

Reactant

SG:

Syngas

t :

Time

W :

Work

References

  • Abubackar HN, Veiga MC, Kennes C (2011) Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels Bioprod Biorefin 5(1):93–114

    Article  CAS  Google Scholar 

  • Aghbashlo M, Mobli H, Rafiee S, Madadlou A (2012a) Energy and exergy analyses of the spray drying process of fish oil microencapsulation. Biosyst Eng 111(2):229–241

    Article  Google Scholar 

  • Aghbashlo M, Mobli H, Rafiee S, Madadlou A (2012b) The use of artificial neural network to predict exergetic performance of spray drying process: a preliminary study. Comput Electron Agric 88:32–43

    Article  Google Scholar 

  • Atabani AE, Mofijur M, Masjuki HH, Badruddin IA, Chong WT, Cheng SF, Gouk SW (2014) A study of production and characterization of Manketti (Ricinodendron rautonemii) methyl ester and its blends as a potential biodiesel feedstock. Biofuel Res J 1(4):139–146

    Article  Google Scholar 

  • Bux F (2014) The potential of using wastewater for microalgal propagation. Biofuel Res J 1(4):106

    Article  Google Scholar 

  • Cengel YA, Boles MA (2005) Thermodynamics: an engineering approach. McGraw-Hill, New York

    Google Scholar 

  • Cotter JL, Chinn MS, Grunden AM (2009) Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells. Bioprocess Biosyst Eng 32(3):369–380

    Article  CAS  Google Scholar 

  • De S, Luque R (2014) Upgrading of waste oils into transportation fuels using hydrotreating technologies. Biofuel Res J 1(4):107–109

    Article  Google Scholar 

  • Devarapalli M, Atiyeh HK (2015) A review of conversion processes for bioethanol production with a focus on syngas fermentation. Biofuel Res J 2(3):268–280

    Article  Google Scholar 

  • Devi MP, Mohan SV, Mohanakrishna G, Sarma PN (2010) Regulatory influence of CO2 supplementation on fermentative hydrogen production process. Int J Hydrogen Energy 35(19):10701–10709

    Article  CAS  Google Scholar 

  • Dincer I, Rosen MA (2012) Exergy: energy, environment and sustainable development. Newnes

  • Draganovic V, Jørgensen SE, Boom R, Jonkers J, Riesen G, van der Goot AJ (2013) Sustainability assessment of salmonid feed using energy, classical exergy and eco-exergy analysis. Ecol Ind 34:277–289

    Article  Google Scholar 

  • Ensinas AV, Modesto M, Nebra SA, Serra L (2009) Reduction of irreversibility generation in sugar and ethanol production from sugarcane. Energy 34(5):680–688

    Article  CAS  Google Scholar 

  • Faizal M, Saidur R, Mekhilef S, Hepbasli A, Mahbubul IM (2015) Energy, economic, and environmental analysis of a flat-plate solar collector operated with SiO2 nanofluid. Clean Technol Environ Policy 17(6):1457–1473

    Article  CAS  Google Scholar 

  • Gaddy JL, Clausen EC (1992) Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism. US Patent No. 5,173,429

  • Hou D, Shao S, Zhang Y, Liu SL, Chen Y, Zhang SS (2012) Exergy analysis of a thermal power plant using a modeling approach. Clean Technol Environ Policy 14(5):805–813

    Article  Google Scholar 

  • Hurst KM, Lewis RS (2010) Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation. Biochem Eng J 48(2):159–165

    Article  CAS  Google Scholar 

  • Ismail KSK, Najafpour G, Younesi H, Mohamed AR, Kamaruddin AH (2008) Biological hydrogen production from CO: bioreactor performance. Biochem Eng J 39(3):468–477

    Article  CAS  Google Scholar 

  • Janalizadeh H, Manesh MK, Amidpour M (2015) Exergoeconomic and exergoenvironmental evaluation of Integration of desalinations with a total site utility system. Clean Technol Environ Policy 17(1):103–117

    Article  CAS  Google Scholar 

  • Jørgensen SE (2015) New method to calculate the work energy of information and organisms. Ecol Model 295:18–20

    Article  Google Scholar 

  • Jørgensen SE, Ladegaard N, Debeljak M, Marques JC (2005) Calculations of exergy for organisms. Ecol Model 185(2):165–175

    Article  Google Scholar 

  • Köpke M, Mihalcea C, Bromley JC, Simpson SD (2011) Fermentative production of ethanol from carbon monoxide. Curr Opin Biotechnol 22(3):320–325

    Article  Google Scholar 

  • Lowe SE, Zeikus JG (1991) Metabolic regulation of carbon and electron flow as a function of pH during growth of Sarcina ventriculi. Arch Microbiol 155(4):325–329

    Article  CAS  Google Scholar 

  • Maddipati P, Atiyeh HK, Bellmer DD, Huhnke RL (2011) Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresour Technol 102(11):6494–6501

    Article  CAS  Google Scholar 

  • Mohammadi M, Younesi H, Najafpour G, Mohamed AR (2012) Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor. J Chem Technol Biotechnol 87(6):837–843

    Article  CAS  Google Scholar 

  • Mohammadi P, Tabatabaei M, Nikbakht AM, Esmaeili Z (2014) Improvement of the cold flow characteristics of biodiesel containing dissolved polymer wastes using acetone. Biofuel Res J 1(1):26–29

    Article  Google Scholar 

  • Najafpour G, Younesi H (2006) Ethanol and acetate synthesis from waste gas using batch culture of Clostridium ljungdahlii. Enzyme Microb Technol 38(1):223–228

    Article  CAS  Google Scholar 

  • Navid P, Manesh MHK, Marigorta AMB (2014) Optimal design of cogeneration system based on exergoenvironmental analysis. Clean Technol Environ Policy 16(6):1045–1065

    Article  Google Scholar 

  • Palacios-Bereche R, Mosqueira-Salazar KJ, Modesto M, Ensinas AV, Nebra SA, Serra LM, Lozano MA (2013) Exergetic analysis of the integrated first-and second-generation ethanol production from sugarcane. Energy 62:46–61

    Article  CAS  Google Scholar 

  • Pandey AK, Tyagi VV, Tyagi SK (2013) Exergetic analysis and parametric study of multi-crystalline solar photovoltaic system at a typical climatic zone. Clean Technol Environ Policy 15(2):333–343

    Article  Google Scholar 

  • Ranjan KR, Kaushik SC (2014) Exergy analysis of the active solar distillation systems integrated with solar ponds. Clean Technol Environ Policy 16(5):791–805

    Article  CAS  Google Scholar 

  • Reddy VS, Panwar NL, Kaushik SC (2012) Exergetic analysis of a vapour compression refrigeration system with R134a, R143a, R152a, R404A, R407C, R410A, R502 and R507A. Clean Technol Environ Policy 14(1):47–53

    Article  Google Scholar 

  • Reddy VS, Kaushik SC, Tyagi SK (2013) Exergetic analysis of solar concentrator aided coal fired super critical thermal power plant (SACSCTPT). Clean Technol Environ Policy 15(1):133–145

    Article  Google Scholar 

  • Rosen MA, Dincer I, Kanoglu M (2008) Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy 36(1):128–137

    Article  Google Scholar 

  • Sakai S, Nakashimada Y, Yoshimoto H, Watanabe S, Okada H, Nishio N (2004) Ethanol production from H2 and CO2 by a newly isolated thermophilic bacterium, Moorella sp. HUC22-1. Biotechnol Lett 26(20):1607–1612

    Article  CAS  Google Scholar 

  • Singla A, Verma D, Lal B, Sarma PM (2014) Enrichment and optimization of anaerobic bacterial mixed culture for conversion of syngas to ethanol. Bioresour Technol 172:41–49

    Article  CAS  Google Scholar 

  • Sohel MI, Jack MW (2012) Thermodynamic analysis of a high-yield biochemical process for biofuel production. Bioresour Technol 124:406–412

    Article  CAS  Google Scholar 

  • Song G, Xiao J, Zhao H, Shen L (2012) A unified correlation for estimating specific chemical exergy of solid and liquid fuels. Energy 40(1):164–173

    Article  CAS  Google Scholar 

  • Sonntag RE, Borgnakke C, Van Wylen GJ, Van Wyk S (1998) Fundamentals of thermodynamics, vol 6. Wiley, New York

    Google Scholar 

  • Tan HT, Lee KT, Mohamed AR (2010) Second-generation bio-ethanol (SGB) from Malaysian palm empty fruit bunch: energy and exergy analyses. Bioresour Technol 101(14):5719–5727

    Article  CAS  Google Scholar 

  • Tang D, Zou X, Liu X, Liu P, Zhamangulova N, Xu X, Zhao Y (2015) Integrated ecosystem health assessment based on eco-exergy theory: a case study of the Jiangsu coastal area. Ecol Ind 48:107–119

    Article  Google Scholar 

  • Tarighaleslami AH, Omidkhah MR, Ghannadzadeh A, Hesas RH (2012) Thermodynamic evaluation of distillation columns using exergy loss profiles: a case study on the crude oil atmospheric distillation column. Clean Technol Environ Policy 14(3):381–387

    Article  CAS  Google Scholar 

  • van der Heijden H, Ptasinski KJ (2012) Exergy analysis of thermochemical ethanol production via biomass gasification and catalytic synthesis. Energy 46(1):200–210

    Article  Google Scholar 

  • Wall G (2009) Exergy, ecology, democracy, Bucaramang, http://exergy.Se/ftp/exergetics.pdf

  • Yang Q, Chen B, Ji X, He YF, Chen GQ (2009) Exergetic evaluation of corn-ethanol production in China. Commun Nonlinear Sci Numer Simul 14(5):2450–2461

    Article  Google Scholar 

  • Younesi H, Najafpour G, Mohamed AR (2005) Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii. Biochem Eng J 27(2):110–119

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank University of Tehran and Biofuel Research Team (BRTeam) for financially supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mortaza Aghbashlo or Meisam Tabatabaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghbashlo, M., Tabatabaei, M., Hosseini, S.S. et al. Performance analysis of a continuous bioreactor for ethanol and acetate synthesis from syngas via Clostridium ljungdahlii using exergy concept. Clean Techn Environ Policy 18, 853–865 (2016). https://doi.org/10.1007/s10098-015-1061-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-1061-3

Keywords

Navigation