Skip to main content

Advertisement

Log in

Impact of carbon sources on nitrous oxide emission and microbial community structure in an anoxic/oxic activated sludge system

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

The carbon source used for denitrification is a key factor in the reduction of nitrous oxide (N2O) produced from wastewater treatment plants because it affects denitrification activity. In this study, two laboratory-scale Modified Ludzak Ettinger (MLE) processes were operated with methanol and sodium acetate as the sole carbon sources. Removal efficiency of soluble nitrogen was not affected by carbon source, but the N2O emission rate from the acetate-fed MLE process (1.6 ± 0.6 μg N–N2O/min) was lower than that from the methanol-fed process (3.0 ± 0.7 μg N–N2O/min). This is supported by the batch experiment data showing the acetate-fed biomass had a higher N2O reduction rate of 10.3 mg/gVSS/h than that of the methanol-fed biomass (3.3 mg/gVSS/h). In the methanol-fed process, 34.9 % of the total bacteria was the genus Methylotenera, which is reportedly incapable of N2O reduction. The acetate-fed process enriched the genera Dechloromonas and Rubrivivax, potential N2O reducers, accounting for 12.2 and 15.9 % of the total bacteria, respectively. The results indicated that acetate is a suitable replacement for methanol for wastewater treatment plants interested in mitigating N2O emission from the MLE process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adouani N, Lendormi T, Limousy L, Sire O (2010) Effect of the carbon source on N2O emissions during biological denitrification. Resour Conserv Recycl 54(5):299–302

    Article  Google Scholar 

  • Butler MD, Wang YY, Cartmell E, Stephenson T (2009) Nitrous oxide emissions for early warning of biological nitrification failure in activated sludge. Water Res 43(5):1265–1272

    Article  CAS  Google Scholar 

  • Chandran K, Stein LY, Klotz MG, van Loosdrecht MC (2011) Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems. Biochem Soc Trans 39(6):1832–1837

    Article  CAS  Google Scholar 

  • Chourey K, Nissen S, Vishnivetskaya T, Shah M, Pfiffner S, Hettich RL, Loffler FE (2013) Environmental proteomics reveals early microbial community responses to biostimulation at a uranium- and nitrate-contaminated site. Proteomics 13(18–19):2921–2930

    CAS  Google Scholar 

  • Colliver B, Stephenson T (2000) Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnol Adv 18:219–232

    Article  CAS  Google Scholar 

  • Fernandez-Nava Y, Maranon E, Soons J, Castrillon L (2008) Denitrification of wastewater containing high nitrate and calcium concentrations. Bioresour Technol 99(17):7976–7981

    Article  CAS  Google Scholar 

  • Foley J, De Haas D, Yuan Z, Lant P (2010) Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants. Water Res 44(3):831–844

    Article  CAS  Google Scholar 

  • Ginige MP, Hugenholtz P, Daims H, Wagner M, Keller J, Blackall LL (2004) Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. Appl Environ Microbiol 70(1):588–596

    Article  CAS  Google Scholar 

  • Gong L, Huo M, Yang Q, Li J, Ma B, Zhu R, Wang S, Peng Y (2013) Performance of heterotrophic partial denitrification under feast-famine condition of electron donor: a case study using acetate as external carbon source. Bioresour Technol 133:263–269

    Article  CAS  Google Scholar 

  • Gupta S, Sharma R (1996) Biological oxidation of high strength nitrogenous wastewater. Water Res 30(3):593–600

    Article  CAS  Google Scholar 

  • Hanaki K, Hong Z, Matsuo T (1992) Production of nitrous oxide gas during denitrification of wastewater. Water Sci Technol 26(5–6):1027–1036

    CAS  Google Scholar 

  • Henry S, Baudoin E, López-Gutiérrez JC, Martin-Laurent F, Brauman A, Philippot L (2004) Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J Microbiol Methods 59(3):327–335

  • Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72(8):5181–5189  

  • Hori T, Kimura M, Aoyagi T, Navarro RR, Ogata A, Sakoda A, Katayama Y, Takasaki M (2014) Biodegradation potential of organically enriched sediments under sulfate-and iron-reducing conditions as revealed by the 16S rRNA deep sequencing. J Water Environ Technol 12(4):357–366

    Article  Google Scholar 

  • Horn MA, Drake HL, Schramm A (2006) Nitrous oxide reductase genes (nosZ) of denitrifying microbial populations in soil and the earthworm gut are phylogenetically similar. Appl Environ Microbiol 72(2):1019–1026

    Article  CAS  Google Scholar 

  • Hu Z, Zhang J, Li S, Xie H (2013) Impact of carbon source on nitrous oxide emission from anoxic/oxic biological nitrogen removal process and identification of its emission sources. Environ Sci Pollut Res 20(2):1059–1069

    Article  CAS  Google Scholar 

  • Igarashi N, Moriyama H, Fujiwara T, Fukumori Y, Tanaka N (1997) The 2.8 Å structure of hydroxylamine oxidoreductase from a nitrifying chemoautotrophic bacterium, Nitrosomonas europaea. Nat Struct Mol Biol 4(4):276–284

    Article  CAS  Google Scholar 

  • Jia W, Zhang J, Xie H, Yan Y, Wang J, Zhao Y, Xu X (2012) Effect of PHB and oxygen uptake rate on nitrous oxide emission during simultaneous nitrification denitrification process. Bioresour Technol 113:232–238

    Article  CAS  Google Scholar 

  • Jones CM, Graf DRH, Bru D, Philippot L, Hallin S (2013) The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. ISME J 7(2):417–426

    Article  CAS  Google Scholar 

  • Kampschreur MJ, Tan NC, Kleerebezem R, Picioreanu C, Jetten MS, Loosdrecht MCM (2007) Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture. Environ Sci Technol 42(2):429–435

    Article  Google Scholar 

  • Kampschreur MJ, Temmink H, Kleerebezem R, Jetten MSM, Loosdrecht MCM (2009) Nitrous oxide emission during wastewater treatment. Water Res 43(17):4093–4103

    Article  CAS  Google Scholar 

  • Kanimozhi R, Vasudevan N (2014) Effect of organic loading rate on the performance of aerobic SBR treating anaerobically digested distillery wastewater. Clean Techn Environ Policy 16(3):467–476

    Article  CAS  Google Scholar 

  • Li Q, Li P, Zhu P, Wu J, Liang S (2008) Effects of exogenous organic carbon substrates on nitrous oxide emissions during the denitrification process of sequence batch reactors. Environ Eng Sci 25(8):1221–1228

    Article  CAS  Google Scholar 

  • Li W, Zheng P, Guo J, Ji J, Zhang M, Zhang Z, Zhan E, Abbas G (2014) Characteristics of self-alkalization in high-rate denitrifying automatic circulation (DAC) reactor fed with methanol and sodium acetate. Bioresour Technol 154:44–50

    Article  CAS  Google Scholar 

  • Liu X, Peng Y, Wu C, Akio T, Peng Y (2008) Nitrous oxide production during nitrogen removal from domestic wastewater in lab-scale sequencing batch reactor. J Environ Sci 20(6):641–645

  • Lu H, Chandran K (2010) Factors promoting emissions of nitrous oxide and nitric oxide from denitrifying sequencing batch reactors operated with methanol and ethanol as electron donors. Biotechnol Bioeng 106(3):390–398

    CAS  Google Scholar 

  • Lu H, Chandran K, Stensel D (2014) Microbial ecology of denitrification in biological wastewater treatment. Water Res 64:237–254

    Article  CAS  Google Scholar 

  • Masih AMM, Albinali K, DeMello L (2010) Price dynamics of natural gas and the regional methanol markets. Energy Policy 38(3):1372–1378

    Article  Google Scholar 

  • Metcalf I, Eddy H (2003) Wastewater engineering; treatment and reuse. McGraw-Hill, New York

    Google Scholar 

  • Mokhayeri Y, Riffat R, Takacs I, Dold P, Bott C, Hinojosa J, Bailey W, Murthy S (2008) Characterizing denitrification kinetics at cold temperature using various carbon sources in lab-scale sequencing batch reactors. Water Sci Technol 58(1):233–238

    Article  CAS  Google Scholar 

  • Mustakhimov I, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L (2013) Insights into denitrification in Methylotenera mobilis from denitrification pathway and methanol metabolism mutants. J Bacteriol 195(10):2207–2211

    Article  CAS  Google Scholar 

  • Nishizawa T, Quan A, Kai A, Tago K, Ishii S, Shen W, Isobe K, Otsuka S, Senoo K (2014) Inoculation with N2-generating denitrifier strains mitigates N2O emission from agricultural soil fertilized with poultry manure. Biol Fertil Soils 50:1001–1007

    Article  Google Scholar 

  • Osaka T, Yoshie S, Tsuneda S, Hirata A, Iwami N, Inamori Y (2006) Identification of acetate-or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing. Microb Ecol 52(2):253–266

    Article  CAS  Google Scholar 

  • Otte S, Grobben NG, Robertson LA, Jetten M, Kuenen JG (1996) Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions. Appl Environ Microbiol 62(7):2421–2426

    CAS  Google Scholar 

  • Pan Y, Ye L, Ni B, Yuan Z (2012) Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers. Water Res 46(15):4832–4840

    Article  CAS  Google Scholar 

  • Panepinto D, Viggiano F, Genon G (2014) The potential of biomass supply for energetic utilization in a small Italian region: Basilicata. Clean Techn Environ Policy 16(5):833–845

    Article  Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326(5949):123–125

    Article  CAS  Google Scholar 

  • Ray S, Mohanty A, Mohanty SS, Mishra S, Chaudhury GR (2014) Removal of nitrate and COD from wastewater using denitrification process: kinetic, optimization, and statistical studies. Clean Techn Environ Policy 16(2):291–301

    Article  CAS  Google Scholar 

  • Rotthauwe J-H, Witzel K-P, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and environmental microbiology 63(12):4704–4712

  • Shiskowski DM (2004) Investigation of nitrous oxide as a nitrification monitoring and aeration system control parameter in sequencing batch reactor wastewater treatment systems. Dissertation, University of British Columbia

  • Solomon S (2007) Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Song K, Suenaga T, Hamamoto A, Satou K, Riya S, Hosomi M, Terada A (2014) Abundance, transcription levels and phylogeny of bacteria capable of nitrous oxide reduction in a municipal wastewater treatment plant. J Biosci Bioeng 118(3):289–297

    Article  CAS  Google Scholar 

  • Srinandan CS, D’Souza G, Srivastava N, Nayak BB, Nerurkar AS (2012) Carbon sources influence the nitrate removal activity, community structure and biofilm architecture. Bioresour Technol 117:292–299

    Article  CAS  Google Scholar 

  • Sun S, Cheng X, Li S, Qi F, Liu Y, Sun D (2013) N2O emission from full-scale urban wastewater treatment plants: a comparison between A(2)O and SBR. Water Sci Technol 67(9):1887–1893

    Article  CAS  Google Scholar 

  • Sun S, Bao Z, Sun D (2014) Study on emission characteristics and reduction strategy of nitrous oxide during wastewater treatment by different processes. Environ Sci Pollut Res Int: 1–8

  • Sun S, Bao Z, Sun D (2015) Study on emission characteristics and reduction strategy of nitrous oxide during wastewater treatment by different processes. Environ Sci Pollut Res 22(6):4222–4229

    Article  CAS  Google Scholar 

  • Tallec G, Garnier J, Billen G, Gousailles M (2006) Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: effect of oxygenation level. Water Res 40(15):2972–2980

    Article  CAS  Google Scholar 

  • Terada A, Zhou S, Hosomi M (2011) Presence and detection of anaerobic ammonium-oxidizing (anammox) bacteria and appraisal of anammox process for high-strength nitrogenous wastewater treatment: a review. Clean Techn Environ Policy 13(6):759–781

    Article  CAS  Google Scholar 

  • Thorn M, Sorensson F (1996) Variation of nitrous oxide formation in the denitrification basin in a wastewater treatment plant with nitrogen removal. Water Res 30(6):1543–1547

    Article  Google Scholar 

  • Throbäck IN, Enwall K, Jarvis Å, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49(3):401–417

  • Tsuneda S, Mikami M, Kimochi Y, Hirata A (2005) Effect of salinity on nitrous oxide emission in the biological nitrogen removal process for industrial wastewater. J Hazard Mater 119(1):93–98

    Article  CAS  Google Scholar 

  • Wang X, Yang X, Zhang Z, Ye X, Kao CM, Chen S (2014) Long-term effect of temperature on N2O emission from the denitrifying activated sludge. J Biosci Bioeng 117(3):298–304

    Article  CAS  Google Scholar 

  • Wen DH, Bai YH, Shi Q, Li ZX, Sun QH, Sun RH, Feng CP, Tang XY (2012) Bacterial diversity in the polluted water of the Dianchi Lakeshore in China. Ann Microbiol 62(2):715–723

    Article  Google Scholar 

  • Yamashita T, Yamamoto-Ikemoto R, Yokoyama H, Kawahara H, Ogino A, Osada T (2014) Mitigation of nitrous oxide (N2O) emission from swine wastewater treatment in an aerobic bioreactor packed with carbon fibers. Anim Sci J. doi:10.1111/asj.12302

    Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61(4):533–616

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported in part by the New Energy and Industrial Technology Development Organization (11B13001d) and a Grant-in-Aid for Scientific Research (No. 268245) from the Japan Society for the Promotion of Science. The authors thank Ms. Kanako Mori (Tokyo University of Agriculture and Technology) for technical assistance. The Japan-U.S. Educational Commission (JUSEC) is acknowledged for financial support provided for WFH. The views expressed in this article are those of the authors and do not reflect the official policy or position of the Air Force Institute of Technology, United States Air Force, Department of Defense, or United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Terada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, K., Harper, W.F., Hori, T. et al. Impact of carbon sources on nitrous oxide emission and microbial community structure in an anoxic/oxic activated sludge system. Clean Techn Environ Policy 17, 2375–2385 (2015). https://doi.org/10.1007/s10098-015-0979-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-0979-9

Keywords

Navigation