Skip to main content
Log in

Integrating input–output models with pinch technology for enterprise sustainability analysis

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

This article proposes an integrated framework for enterprise sustainability assessment by integrating enterprise input–output modeling with water pinch analysis. Firstly, material metabolism of an enterprise is investigated to establish a baseline; then, potential for resource conservation and waste minimization is evaluated. The environmental performance and economic feasibility of modifications are then assessed based on identification of key processes. Thus, the framework provides a method to connect material metabolism analysis of enterprises with the implementation of specific actions for resource conservation and waste minimization. The case of the water utilization system at Wangpo coal mine in China is used to illustrate the framework developed. Two process integration scenarios, involving direct reuse/recycle and regeneration, are presented. The corresponding revised input–output models for each scenario are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SR i :

Water source i

SK j :

Water sink j

F SRi,SKj :

Flowrate from SR i to SK j

F SRi :

Flowrate of water source i

F SKj :

Flowrate of water sink j

F C,k :

Cumulative flowrate at concentration level k

Σ i F SRi :

Total flowrate of water source i

Σ j F SKj :

Total flowrate of water source i

Σ i F SRi − Σ j F SKj :

Net flowrate at concentration level k

C SRi :

Impurity concentration of water source i

C SKj :

Impurity concentration limit of water sink j

C k :

Concentration level k of cascade table

Δm k :

Impurity load in each concentration interval k

Cum.Δm k :

Cumulative impurity load at concentration level k

References

  • Agrawal R, Sikdar SK (2012) Energy, environment and sustainability challenges and opportunities for chemical engineers. Curr Opin Chem Eng 1(3):201–203

    Article  CAS  Google Scholar 

  • Albino V, Dietzenbacher E, Kühtz S (2003) Analysing materials and energy flows in an industrial district using an enterprise input–output model. Econ Syst Res 15(4):457–480

    Article  Google Scholar 

  • Albino V, Nicolò MD, Garavelli AC, Petruzzelli AM, Yazan DM (2007) Rural development and agro-energy supply chain. An application of enterprise input–output modelling supported by GIS. In: 16th International input–output conference, Istanbul, Turkey

  • Aviso KB, Tan RR, Culaba AB, Cruz JB (2011) Fuzzy input–output model for optimizing eco-industrial supply chains under water footprint constraints. J Clean Prod 19(2–3):187–196

    Article  Google Scholar 

  • Bandyopadhyay S (2011) Design and optimization of isolated energy systems through pinch analysis. Asia-Pac J Chem Eng 6(3):518–526

    Article  CAS  Google Scholar 

  • Bandyopadhyay S, Sahu GC, Foo DCY, Tan RR (2010) Segregated targeting for multiple resource networks using decomposition algorithm. AIChE J 5(32):1235–1248

    Google Scholar 

  • Chew IML, Foo DCY, Ng DKS, Tan RR (2010a) Flowrate targeting algorithm for interplant resource conservation network. Part 1 unassisted integration scheme. Ind Eng Chem Res 49(14):6439–6455

    Article  CAS  Google Scholar 

  • Chew IML, Foo DCY, Tan RR (2010b) Flowrate targeting algorithm for interplant resource conservation network. Part 2: assisted integration scheme. Ind Eng Chem Res 49(14):6456–6468

    Article  CAS  Google Scholar 

  • Dai T (2010) Two quantitative indices for the planning and evaluation of eco-industrial parks. Resour Conserv Recycl 54(7):442–448

    Article  Google Scholar 

  • Diamante JAR, Tan RR, Foo DCY, Ng DKS, Aviso KB, Bandyopadhyay S (2013) A graphical approach for pinch-based source–sink matching and sensitivity analysis in carbon capture and storage systems. Ind Eng Chem Res 52(22):7211–7222

    Article  CAS  Google Scholar 

  • El-Halwagi MM (1997) Pollution prevention through process integration: systematic design tools. Academic Press, San Diego

    Google Scholar 

  • El-Halwagi MM, Manousiouthakis V (1989) Synthesis of mass exchange networks. AIChE J 35(8):1233–1244

    Article  CAS  Google Scholar 

  • Ewing BR, Hawkins TR, Wiedmann TO, Galli A, Ertug Ercin A, Weinzettel J et al (2012) Integrating ecological and water footprint accounting in a multi-regional input–output framework. Ecol Indic 23:1–8

    Article  Google Scholar 

  • Finn JT (1976) Measures of ecosystem structure and function derived from analysis of flows. J Theor Biol 56(2):363–380

    Article  CAS  Google Scholar 

  • Foo DCY (2012) Process integration for resource conservation. CRC Press, Boca Raton

    Google Scholar 

  • Foo DCY, Tan RR, Ng DKS (2008) Carbon and footprint-constrained energy planning using cascade analysis technique. Energy 33(10):1480–1488

    Article  CAS  Google Scholar 

  • Geldermann J, Treitz M, Rentz O (2006) Integrated technique assessment based on the pinch analysis approach for the design of production networks. Eur J Oper Res 171(3):1020–1032

    Article  Google Scholar 

  • Hendrickson CT, Lave LB, Matthews HS (2006) Environmental life cycle assessment of goods and services: an input–output approach. RFF Press, Washington, DC

    Google Scholar 

  • Isard W, Vietorisz T (1955) Industrial complex analysis and regional development. Pap Reg Sci 1(1):227–247

    Article  Google Scholar 

  • Jia X, Li Z, Wang F, Foo DY, Qian Y (2015) A new graphical representation of water footprint pinch analysis for chemical processes. Clean Technol Environ Policy. doi:10.1007/s10098-015-0921-1

    Google Scholar 

  • Kazantzi V, El-Halwagi MM (2005) Targeting material reuse via property integration. Chem Eng Prog 101(8):28–37

    CAS  Google Scholar 

  • Klemeš JJ (2013) Handbook of Process Integration (PI): minimisation of energy and water use, waste and emissions. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  • Klemeš JJ, Kravanja Z (2013) Forty years of heat integration: pinch analysis (PA) and mathematical programming (MP). Curr Opin Chem Eng 2(4):461–474

    Article  Google Scholar 

  • Kuan KC, Foo DY, Tan RR, Kumaresan S, Aziz RA (2007) Streamlined life cycle assessment of residue utilization options in Tongkat Ali (Eurycoma longifolia) water extract manufacturing process. Clean Technol Environ Policy 9(3):225–234

  • Kuhtz S, Zhou C, Albino V, Yazan DM (2010) Energy use in two Italian and Chinese tile manufacturers: a comparison using an enterprise input–output model. Energy 35(1):364–374

    Article  Google Scholar 

  • Lenzen M, Lundie S (2012) Constructing enterprise input–output tables—a case study of New Zealand dairy products. J Econ Struct 1(1):1–15

    Article  Google Scholar 

  • Liang S, Zhang T (2013) Investigating reasons for differences in the results of environmental, physical, and hybrid input–output models. J Ind Ecol 17(3):432–439

    Article  Google Scholar 

  • Liang S, Jia X, Zhang T (2011a) Three-dimensional hybrid enterprise input–output model for material metabolism analysis: a case study of coal mines in China. Clean Technol Environ Policy 13(1):71–85

    Article  CAS  Google Scholar 

  • Liang S, Shi L, Zhang T (2011b) Achieving dewaterization in industrial parks: a case study of the Yixing Economic Development Zone. J Ind Ecol 15(4):597–613

    Article  CAS  Google Scholar 

  • Liang S, Zhang T, Jia X (2012a) Clustering economic sectors in China on a life cycle basis to achieve environmental sustainability. Front Environ Sci Eng 7(1):97–108

    Article  Google Scholar 

  • Liang S, Zhang T, Xu Y (2012b) Comparisons of four categories of waste recycling in China’s paper industry based on physical input–output life-cycle assessment model. Waste Manag 32(3):603–612

    Article  Google Scholar 

  • Lin X, Polenske KR (1998) Input–output modeling of production processes for business management. Struct Change Econ Dyn 9(2):205–226

    Article  Google Scholar 

  • Linnhoff B, Hindmarsh E (1983) The pinch design method for heat exchanger networks. Chem Eng Sci 38(5):745–763

    Article  CAS  Google Scholar 

  • Ludwig J, Treitz M, Rentz O, Geldermann J (2009) Production planning by pinch analysis for biomass use in dynamic and seasonal markets. Int J Prod Res 47(8):2079–2090

    Article  Google Scholar 

  • Manan ZA, Tan YL, Foo DCY (2004) Targeting the minimum water flow rate using water cascade analysis technique. AIChE J 50(12):3169–3183

    Article  CAS  Google Scholar 

  • MEPPRC (2008) Cleaner production standard—Coal mining and processing industry. HJ446-2008. Ministry of Environmental Protection of the People’s Republic of China (in Chinese)

  • Ng DKS, Foo DCY, Tan RR, Tan YL (2007) Ultimate flowrate targeting with regeneration placement. Chem Eng Res Des 85(9):1253–1267

    Article  CAS  Google Scholar 

  • Ou X, Yan X, Zhang X (2011) Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China. Appl Energy 88(1):289–297

    Article  CAS  Google Scholar 

  • Piluso C, Huang Y, Lou HH (2008) Ecological input–output analysis-based sustainability analysis of industrial systems. Ind Eng Chem Res 47(6):1955–1966

    Article  CAS  Google Scholar 

  • Prakash R, Shenoy UV (2005) Targeting and design of water networks for fixed flowrate and fixed contaminant load operations. Chem Eng Sci 60(1):255–268

    Article  CAS  Google Scholar 

  • Shafiee S, Topal E (2010) A long-term view of worldwide fossil fuel prices. Appl Energy 87(3):988–1000

    Article  Google Scholar 

  • Singhvi A, Shenoy UV (2002) Aggregate planning in supply chains by pinch analysis. Chem Eng Res Des 80(6):597–605

    Article  CAS  Google Scholar 

  • Tan RR, Foo DCY (2007) Pinch analysis approach to carbon-constrained energy sector planning. Energy 32(8):1422–1429

    Article  Google Scholar 

  • Tan RR, Foo DCY, Aviso KB, Ng DKS (2009) The use of graphical pinch analysis for visualizing water footprint constraints in biofuel production. Appl Energy 86(5):605–609

    Article  CAS  Google Scholar 

  • Tan RR, Aviso KB, Barilea IU, Culaba AB, Cruz JB (2012a) A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints. Appl Energy 90(1):154–160

    Article  Google Scholar 

  • Tan RR, Lam HL, Kasivisvanathan H, Ng DKS, Foo DCY, Kamal M et al (2012b) An algebraic approach to identifying bottlenecks in linear process models of multifunctional energy systems. Theor Found Chem Eng 46(6):642–650

    Article  CAS  Google Scholar 

  • Varbanov PS (2014) Energy and water interactions: implications for industry. Curr Opin Chem Eng 5:15–21

    Article  Google Scholar 

  • Varbanov PS, Seferlis P (2014) Process innovation through Integration approaches at multiple scales: a perspective. Clean Technol Environ Policy 16(7):1229–1234

    Article  Google Scholar 

  • Wan Alwi SR, Mohammad Rozali NE, Abdul-Manan Z, Klemeš JJ (2012) A process integration targeting method for hybrid power systems. Energy 44(1):6–10

    Article  Google Scholar 

  • Wan Alwi SR, Tin OS, Rozali NEM, Manan ZA, Klemeš JJ (2013) New graphical tools for process changes via load shifting for hybrid power systems based on Power Pinch Analysis. Clean Technol Environ Policy 15(3):459–472

    Article  Google Scholar 

  • Wang YP, Smith R (1994) Wastewater minimisation. Chem Eng Sci 49(7):981–1006

    Article  CAS  Google Scholar 

  • Wu G, Liu L-C, Han Z-Y, Wei Y-M (2012) Climate protection and China’s energy security: win–win or tradeoff. Appl Energy 97:157–163

    Article  Google Scholar 

  • Yazan DM, Garavelli AC, Petruzzelli AM, Albino V (2011) The effect of spatial variables on the economic and environmental performance of bioenergy production chains. Int J Prod Econ 131(1):224–233

    Article  Google Scholar 

  • Zhang X, Hu H, Zhang R, Deng S (2014) Interactions between China’s economy, energy and the air emissions and their policy implications. Renew Sustain Energy Rev 38:624–638

    Article  Google Scholar 

  • Zhelev TK (2005) On the integrated management of industrial resources incorporating finances. J Clean Prod 13(5):469–474

    Article  Google Scholar 

Download references

Acknowledgments

We thank anonymous reviewers for their constructive comments. This article is financially supported by the National Natural Science Foundation of China (Nos. 21136003 and 41101570). Data and technical assistance from the Wangpo mine are also appreciated. We thank Dr. S. Liang from University of Michigan for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Jia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting Information the Supporting Information provides details on (1) the conceptual structure of EIO model, (2) EIO tables for BAU scenario and new scenarios (direct reuse/recycle and regeneration), and (3) the limiting data for water cascade analysis and the results.

Supplementary material 1 (DOC 590 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Li, Z., Wang, F. et al. Integrating input–output models with pinch technology for enterprise sustainability analysis. Clean Techn Environ Policy 17, 2255–2265 (2015). https://doi.org/10.1007/s10098-015-0963-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-0963-4

Keywords

Navigation