Skip to main content

A design of experiments (DOE) approach to data uncertainty in LCA: application to nanotechnology evaluation

Abstract

A limitation of any reported environmental performance is the considerable uncertainties present in the analysis. A methodology based on design of experiments techniques, coupled with life cycle assessment, was implemented to investigate the influence of inventory uncertainties on the predicted environmental impact. A case study on nanomanufacturing is presented. Results showed that mass data variability does not have a significant effect on the predicted environmental impacts. Material profiles for input materials did have a highly significant effect on the overall impact. Energy consumption and material characterization were identified as two areas where additional research is needed in order to obtain more accurate and precise predictions of the overall impact of nanomaterials. The methodology facilitates impact assessment of material selection for life cycle assessment, allows the establishment of a predictive model, and makes possible the identification of significant process variables as well as their interdependency.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. An eco-indicator point is 1/1000th of the yearly environmental load of a European citizen (Goedkoop and Spriensma 2000).

Abbreviations

y :

Test response

x :

Independent variable

\(\hat{y}\) :

Predicted response

\(\sigma ^2_y\) :

Variance of the response

\(\sigma ^2_i\) :

Variance of the ith independent variable

\(\mu _y\) :

Mean test response

\(\mu _i\) :

Mean of the ith independent variable

Y :

Model response with uncertainty

References

  • Arena M, Azzone G, Conte A (2013) A streamlined LCA framework to support early decision making in vehicle development. J Clean Prod 41:105–113. doi:10.1016/j.jclepro.2012.09.031

    Article  Google Scholar 

  • Bare J (2014) Development of impact assessment methodologies for environmental sustainability. Clean Technol Environ Policy 16(4):681–690

    Article  Google Scholar 

  • Beard J, Sutherland J (1993) Robust suspension system design. Adv Des Autom 65:387–395

    Google Scholar 

  • Cherubini F, Guest G, Strømman A (2013) Application of probability distributions to the modeling of biogenic CO\(_2\) fluxes in life cycle assessment. GCB Bioenergy 4(4):784–798. doi:10.1111/j.1757-1707.2011.01156.x

    Google Scholar 

  • Chiang I, Brinson B, Smalley R, Margrave J, Hauge R (2001) Purification and characterization of single-wall carbon nanotubes. J Phys Chem B 105(6):1157–1161

    Article  CAS  Google Scholar 

  • Clavreul J, Guyonnet D, Tonini D, Christensen T (2013) Stochastic and epistemic uncertainty propagation in LCA. Int J Life Cycle Assess 18(7):1393–1403. doi:10.1007/s11367-013-0572-6

    Article  Google Scholar 

  • DeVor R, Chang T, Sutherland J (2007) Statistical quality design and control, 2nd edn. Pearson Prentice Hall, New Jersey

    Google Scholar 

  • Dorini G, Kapelan Z, Azapagic A (2011) Managing uncertainty in multiple-criteria decision making related to sustainability assessment. Clean Technol Environ Policy 13(1):133–139. doi:10.1007/s10098-010-0291-7

    Article  Google Scholar 

  • Finnveden G, Lindfors LG (1998) Data quality of life cycle inventory datarules of thumb. Int J Life Cycle Assess 3(2):65–66. doi:10.1007/BF02978486

    Article  Google Scholar 

  • Gavankar S, Anderson S, Keller AA (2014) Critical components of uncertainty communication in life cycle assessments of emerging technologies. J Ind Ecol. doi:10.1111/jiec.12183

  • Goedkoop M, Spriensma R (2000) The Ecoindicator-99: A damage oriented method for life-cycle assessment, methodology report. Pré Consultants

  • Gonzalez R (2009) Data analysis for experimental design. The Guilford Press, New York

    Google Scholar 

  • Healy M, Dahlben L, Isaacs J (2008) Environmental assessment of single-walled carbon nanotube processes. J Ind Ecol 12(3):376–393

    Article  CAS  Google Scholar 

  • Heijungs R, Huijbregts M (2004) A review of approaches to treat uncertainty in LCA. Proceedings of the IEMSS conference

  • Hetherington A, Borrion A, Griffiths O, McManus M (2014) Use of LCA as a development tool within early research: challenges and issues across different sectors. Int J Life Cycle Assess 19(1):130–143. doi:10.1007/s11367-013-0627-8

    Article  Google Scholar 

  • Huijbregts M, Norris G, Bretz R, Ciroth A, Maurice B, von Bahr B, Weidema B, de Beaufort A (2001) Framework for modelling data uncertainty in life cycle inventories. Int J Life Cycle Assess 6(3):127–132. doi:10.1007/BF02978728

    Article  Google Scholar 

  • Huijbregts M, Gilijamse W, Ragas A, Reijnders L (2003) Evaluating uncertainty in environmental life-cycle assessment. a case study comparing two insulation options for a Dutch one-family dwelling. Environ Sci Technol 37(11):2600–2608. doi:10.1021/es020971+

    Article  CAS  Google Scholar 

  • ISO (1998) Environmental management standard, life cycle assessment, principles and framework (ISO 14040:2006). International Organization for Standardization

  • Kivimaa P, Mickwitz P (2006) The challenge of greening technologies—environmental policy integration in finnish technology policies. Res Policy 35(5):729–744

    Article  Google Scholar 

  • Klöppfer W, Curran M, Frankl P, Heijungs R, Köhler A, Olsen S (2007) Nanotechnology and life cycle assessment: a systems approach to nanotechnology and the environment. European Commission (EC) and the Project on Emerging Nanotechnologies

  • Lloyd S, Ries R (2007) Characterizing, propagating, and analyzing uncertainty in life-cycle assessment: a survey of quantitative approaches. J Ind Ecol 11(1):161–179

    Article  Google Scholar 

  • Lo S, Ma H, Lo S (2005) Quantifying and reducing uncertainty in life cycle assessment using the Bayesian Monte Carlo method. Sci Total Environ 340(1):23–33. doi:10.1016/j.scitotenv.2004.08.020

    Article  CAS  Google Scholar 

  • McLellan B, Corder G (2013) Risk reduction through early assessment and integration of sustainability in design in the minerals industry. J Clean Prod 53:37–46

    Article  Google Scholar 

  • Mery Y, Tiruta-Barna L, Baudin I, Benetto E, Igos E (2014) Formalization of a technical procedure for process ecodesign dedicated to drinking water treatment plants. J Clean Prod 68:16–24

    Article  Google Scholar 

  • Meyer D, Upadhyayula V (2014) The use of life cycle tools to support decision making for sustainable nanotechnologies. Clean Technol Environ Policy 16(4):757–772. doi:10.1007/s10098-013-0686-3

    Article  Google Scholar 

  • Moign A, Vardelle A, Themelis N, Legoux J (2010) Life cycle assessment of using powder and liquid precursors in plasma spraying: the case of yttria-stabilized zirconia. Surf Coat Technol 205(2):668–673. doi:10.1016/j.surfcoat.2010.07.015

    Article  CAS  Google Scholar 

  • Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35(7):583–592. doi:10.1039/B502142C

    Article  CAS  Google Scholar 

  • Roelant G, Kemppainen A, Shonnard D (2004) Assessment of the automobile assembly paint process for energy, environmental, and economic improvement. J Ind Ecol 8(1–2):173–191. doi:10.1162/1088198041269355

    Google Scholar 

  • Ross S, Evans D, Webber M (2002) How LCA studies deal with uncertainty. Int J Life Cycle Assess 7(1):47–52

    Article  Google Scholar 

  • Seager TP, Linkov I (2009) Uncertainty in life cycle assessment of nanomaterials. In: Linkov I, Steevens J (eds) Nanomaterials: risks and benefits., NATO science for peace and security series C: environmental securitySpringer, Dordrecht, pp 423–436. doi:10.1007/978-1-4020-9491-0-33

    Chapter  Google Scholar 

  • Sonnemann G, Schuhmacher M, Castells F (2003) Uncertainty assessment by a Monte Carlo simulation in a life cycle inventory of electricity produced by a waste incinerator. J Clean Prod 11(3):279–292. doi:10.1016/S0959-6526(02)00028-8

    Article  Google Scholar 

  • Steen B (1997) On uncertainty and sensitivity of LCA-based priority setting. J Clean Prod 5(4):255–262

    Article  Google Scholar 

  • Taguchi G (1986) Introduction to quality engineering: designing quality into products and processes. The Organization, Tokyo

    Google Scholar 

  • Tan R (2008) Using fuzzy numbers to propagate uncertainty in matrix-based LCI. Int J Life Cycle Assess 13(7):585–592

    Article  Google Scholar 

  • Tischner U, Deutschland U (2000) How to do EcoDesign?: a guide for environmentally and economically sound design. Verlag form

  • van Zelm R, Huijbregts M (2013) Quantifying the trade-off between parameter and model structure uncertainty in life cycle impact assessment. Environ Sci Technol 47(16):9274–9280. doi:10.1021/es305107s

    Article  Google Scholar 

  • Wardak A, Gorman M, Swami N, Deshpande S (2008) Identification of risks in the life cycle of nanotechnology-based products. J Ind Ecol 12(3):435–448

    Article  CAS  Google Scholar 

  • Wender B, Foley R, Prado-Lopez V, Eisenberg D, Ravikumar D, Hottle T, Sadowski J, Flanagan W, Fisher A, Laurin L, Bates M, Linkov I, Seager T, Matthew P, Guston D (2014) Illustrating anticipatory life cycle assessment for emerging photovoltaic technologies. Environ Sci Technol 48(18):10531–10538

    Article  CAS  Google Scholar 

  • Wiesner MR, Lowry GV, Jones KL, Hochella JMF, Giulio RTD, Casman E, Bernhardt ES (2009) Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ Sci Technol 43(17):6458–6462

    Article  CAS  Google Scholar 

  • Williams E, Weber C, Hawkins T (2009) Hybrid framework for managing uncertainty in life cycle inventories. J Ind Ecol 13(6):928–944. doi:10.1111/j.1530-9290.2009.00170.x

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding provided by the Sustainable Futures IGERT Project sponsored by the U.S. National Science Foundation (Grant # DGE 033401), and the Richard and Elizabeth Henes Endowment. Special thanks to Dr. David Shonnard for his assistance with the LCA methodology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Rivera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 356 KB)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera, J.L., Sutherland, J.W. A design of experiments (DOE) approach to data uncertainty in LCA: application to nanotechnology evaluation. Clean Techn Environ Policy 17, 1585–1595 (2015). https://doi.org/10.1007/s10098-014-0890-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-014-0890-9

Keywords

  • Emerging technologies
  • Life cycle assessment
  • Uncertainties
  • Data variability
  • Nanotechnology