Skip to main content

Advertisement

Log in

Is nitrogen fixation (once again) “vital to the progress of civilized humanity”?

  • Perspective
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

The world food supply has become dependent on synthetic fertilizer from ammonia, which comes from the Haber–Bosch process. This process consumes large amounts of fossil fuels and releases large amounts of greenhouse gases. The excessive use of synthetic fixed nitrogen fertilizers has led to severe environmental effects, but fixed nitrogen is essential to the sustainability of biofuels. Nitrogen fertilizers are also required for biotic carbon capture schemes like bioenergy with carbon capture and storage (BECCS), afforestation, and soil carbon sequestration. Ammonia has been proposed as a non-carbon emitting alternative fuel that has many advantages over hydrogen. Organic agriculture and nitrogen recovery from waste streams may only partially reduce the demand for synthetic fixed nitrogen. Social solutions like population stabilization may be the best solution for the food supply problem, but ammonia is an enabling technology for alternative fuels and carbon sequestration. Alternative processes for nitrogen fixation are very early in development. This paper offers the viewpoint that alternative means of nitrogen fixation and the wise use of fixed nitrogen need to be developed quickly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlgren S, Baky A, Bernesson S, Nordberg Å, Olle Norén, Hansson P-A (2008) Ammonium nitrate fertiliser production based on biomass –Environmental effects from a life cycle perspective. Bioresour Technol 99:8034–8041

    Article  CAS  Google Scholar 

  • Anderson JS, Rittle J, Peters JC (2013) Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 501:84–88

    Article  CAS  Google Scholar 

  • Appl M (1999) Ammonia: principles and industrial practice. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Arashiba K, Miyake Y, Nishibayashi Y (2011) A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat Chem 3:120–125

    Article  CAS  Google Scholar 

  • Bauermeister U, Wild A, Meier T (2009) Stickstoffabtrennung mit dem ANAStrip®-Verfahren System GNS. In: Schutte A (ed) Gärrestaufbereitung für eine pflanzenbauliche Nutzung –Stand und F + E-Bedarf. Fachagentur Nachwachsende Rohstoffee (FNR), Gülzow, Deutschland, pp 78–95

    Google Scholar 

  • Bodirsky BL, Popp A, Lotze-Campen H, Dietrich JP, Rolinski S, Weindl I, Schmitz C, Müller C, Bonsch M, Humpenöder F, Biewald A, Stevanovic M (2014) Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat Commun 5:3858

    Article  Google Scholar 

  • Borowitzka MA, Moheimani NR (2013) Sustainable biofuels from algae. Mitig Adapt Strateg Glob Change 18:13–25

    Article  Google Scholar 

  • Broda H, Tuczek F (2014) Catalytic ammonia synthesis in homogeneous solution–biomimetic at last? Angew Chem Int Ed 53:632–634

    Article  CAS  Google Scholar 

  • Connor DJ (2013) Organically grown crops do not a cropping system make and nor can organic agriculture nearly feed the world. Field Crops Res 144:145–147

    Article  Google Scholar 

  • Crookes W (1899) President’s address. In: Report of the 68th meeting of the British association for the advancement of Science, John Murray, London, pp. 3–38. http://www.archive.org/details/reportofbritisha99brit. Accessed 1 Apr 2014

  • Čuček L, Klemeš JJ, Kravanja Z (2012) Carbon and nitrogen trade-offs in biomass energy production. Clean Technol Environ Policy 14:389–397

    Article  Google Scholar 

  • Davis ML (2011) Water and wastewater engineering: design principles and practice. McGraw-Hill, New York

    Google Scholar 

  • Day D, Evans RJ, Lee JW, Reicosky D (2005) Economical CO2, SOx, and NOx capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration. Energy 30:2558–2579

    Article  CAS  Google Scholar 

  • de Vries W, Kros J, Kroeze C, Seitzinger SP (2013) Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr Opin Environ Sustain 5:392–402

    Article  Google Scholar 

  • Diouf J (2009) FAO’s director-general on how to feed the world in 2050. Popul Dev Rev 35:837–839

    Article  Google Scholar 

  • Dong R, Lu H, Yu Y, Zhang Z (2012) A feasible process for simultaneous removal of CO2, SO2 and NOx in the cement industry by NH3 scrubbing. Appl Energy 97:185–191

    Article  CAS  Google Scholar 

  • Erisman JW, van Grinsven H, Leip A, Mosier A, Bleeker A (2010) Nitrogen and biofuels: an overview of the current state of knowledge. Nutr Cycl Agroecosyst 86:211–223

    Article  CAS  Google Scholar 

  • Erisman JW, Galloway JN, Seitzinger S, Bleeker A, Dise NB, Petrescu AM, Leach AM, de Vries W (2013) Consequences of human modification of the global nitrogen cycle. Philos T Roy Soc B 368:20130116

    Article  Google Scholar 

  • FAO (2013) AQUASTAT database - Food and Agriculture Organization of the United Nations. www.fao.org/nr/water/aquastat/data/query/index.html?lang=en Accessed 3 Apr 2014

  • FAO (2014) FAOSTAT database - Food and Agriculture Organization of the United Nations. http://faostat3.fao.org/faostat-gateway/go/to/download/R/RF/E Accessed 3 Apr 2014

  • Galvez ME, Halmann M, Steinfeld A (2007) Ammonia production via a two-step Al2O3/AlN thermochemical cycle. 1. Thermodynamic, environmental, and economic analyses. Ind Eng Chem Res 46:2042–2046

    Article  CAS  Google Scholar 

  • Giddey S, Badwal SPS, Kulkarni A (2013) Review of electrochemical ammonia production technologies and materials. Int J Hydrog Energy 38:14576–14594

    Article  CAS  Google Scholar 

  • Gilbert P, Alexander S, Thornley P, Brammer J (2014) Assessing economically viable carbon reductions for the production of ammonia from biomass gasification. J Clean Prod 64:581–589

    Article  CAS  Google Scholar 

  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726

    Article  CAS  Google Scholar 

  • Han FX, King RL, Lindner JS, Yu TY, Durbha SS, Younan NH, Monts DL, Su Y, Luthe JC, Plodinec MJ (2011) Nutrient fertilizer requirements for sustainable biomass supply to meet U.S. bioenergy goal. Biomass Bioenergy 35:253–262

    Article  Google Scholar 

  • Hardin G (1968) The tragedy of the commons. Science 16:1243–1248

    Google Scholar 

  • Hess RJ, Foust TD, Hoskinson R, Thompson D (2003) Roadmap for agricultural biomass feedstock supply in the United States. 2003 Report DOE/NE-ID-11129 Rev. 1

  • Holma A, Koponen K, Antikainen R, Lardon L, Leskinen P, Roux P (2013) Current limits of life cycle assessment framework in evaluating environmental sustainability - case of two evolving biofuel technologies. J Clean Prod 54:215–228

    Article  Google Scholar 

  • IFA (2009a) Feeding the earth: energy efficiency and CO2 emissions in ammonia production. International Fertilizer Industry Association, Paris

    Google Scholar 

  • IFA (2009b) Fertilizers, climate change and enhancing agricultural productivity sustainably. International Fertilizer Industry Association, Paris

    Google Scholar 

  • IFA (2014) Fertilizer Outlook 2014-2018. International Fertilizer Industry Association, Paris

    Google Scholar 

  • IFOAM (2005) Principles of organic agriculture preamble. International Federation of Organic Agriculture Movements, Bonn, Germany. www.ifoam.org/en/organic-landmarks/principles-organic-agriculture Accessed 3 Apr 2014

  • Jia H-P, Quadrelli EA (2014) Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chem Soc Rev 43:547–564

    Article  CAS  Google Scholar 

  • Lan R, Irvine JTS, Tao S (2013) Synthesis of ammonia directly from air and water at ambient temperature and pressure. Sci Rep. doi:10.1038/srep01145

    Google Scholar 

  • Liu YH, Kumar S, Kwa J-H, Ra CS (2013) Magnesium ammonium phosphate formation, recovery and its application as valuable resources: a review. J Chem Technol Biotechnol 88:181–189

    Article  CAS  Google Scholar 

  • Macdonald CA, Anderson IC, Bardgett RD, Singh BK (2011) Role of nitrogen in carbon mitigation in forest ecosystems. Curr Opin Environ Sustain 3:303–310

    Article  Google Scholar 

  • Michalsky R, Parman BJ, Amanor-Boadu V, Pfromm PH (2012) Solar thermochemical production of ammonia from water, air and sunlight: thermodynamic and economic analyses. Energy 42:251–260

    Article  CAS  Google Scholar 

  • Nowak B, Nesme T, David C, Pellerin S (2013) To what extent does organic farming rely on nutrient inflows from conventional farming? Environ Res Lett 8 doi:10.1088/1748-9326/8/4/044045

  • Obersteiner M, Azar C, Kauppi P, Möllersten K, Moreira J, Nilsson S, Read P, Riahi K, Schlamadinger B, Yamagata Y, Yan J, Van Ypersele J-P (2001) Managing climate risk [3]. Science 294:786–787

    Article  CAS  Google Scholar 

  • Oldroyd GED, Dixon R (2014) Biotechnological solutions to the nitrogen problem. Curr Opin Biotechnol 26:19–24

    Article  CAS  Google Scholar 

  • Olson N (2013) NH3 fuel — gaining momentum. Tenth Annual NH3 Fuel Conference, September 23, 2013. nh3fuelassociation.org/2013/09/16/nh3-fuel-gaining-momentum Accessed 3 Apr 2014

  • Rafiqul I, Weber C, Lehmann B, Voss A (2005) Energy efficiency improvements in ammonia production - perspectives and uncertainties. Energy 30:2487–2504

    Article  CAS  Google Scholar 

  • Razon LF (2012) Life cycle energy and greenhouse gas profile of a process for the production of ammonium sulfate from nitrogen-fixing photosynthetic cyanobacteria. Bioresour Technol 107:339–346

    Article  CAS  Google Scholar 

  • Razon LF (2013) Life cycle analysis of an alternative to the Haber-Bosch process: non-renewable energy usage and global warming potential of liquid ammonia from cyanobacteria. Environ Prog Sustain Energy. doi:10.1002/ep11817

    Google Scholar 

  • Reiter AJ, Kong SC (2011) Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel. Fuel 90:87–97

    Article  CAS  Google Scholar 

  • Reşitoğlu IA, Altinişik K, Keskin A (2014) The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technol Environ Policy. doi:10.1007/s10098-014-0793-9

    Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson A, Chapin FS III, Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14:32

    Google Scholar 

  • Ryu K, Zacharakis-Jutz GE, Kong SC (2014) Performance enhancement of ammonia-fueled engine by using dissociation catalyst for hydrogen generation. Int J Hydrog Energy 39:2390–2398

    Article  CAS  Google Scholar 

  • Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485:229–234

    Article  CAS  Google Scholar 

  • Sikdar SK (2013) Resurgence of fossil fuels? Clean Technol Environ Policy 15:203–204

    Article  Google Scholar 

  • Skinner C, Gattinger A, Muller A, Mäder P, Fließbach A, Stolze M, Ruser R, Niggli U (2014) Greenhouse gas fluxes from agricultural soils under organic and non-organic management—A global meta-analysis. Sci Total Environ 468–469:553–563

    Article  Google Scholar 

  • Smil V (2001) Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production. MIT Press, Cambridge

    Google Scholar 

  • Smith P (2013) Delivering food security without increasing pressure on land. Glob Food Secur 2:18–23

    Article  Google Scholar 

  • Smith LJ, Torn MS (2013) Ecological limits to terrestrial biological carbon dioxide removal. Climat Chang 118:89–103

    Article  CAS  Google Scholar 

  • Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Minasnya B, McBratney AB, de de Remy Courcelles V, Singh K, Wheeler I, Abbott L, Angers DA, Baldock J, Bird M, Brookes PC, Chenu C, Jastrow JD, Lal R, Lehmann J, O’Donnell AG, Parton WJ, Whitehead D, Zimmermann M (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99

    Article  CAS  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort B (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108:20260–20264

    Article  CAS  Google Scholar 

  • Tuomisto HL, Hodge ID, Riordan P, Macdonald DW (2012) Does organic farming reduce environmental impacts? A meta-analysis of European research. J Environ Manag 112:309–320

    Article  CAS  Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division (2013) World Population Prospects: The 2012 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP.227

  • Wolfram|Alpha (2014) Wolfram Alpha LLC. www.wolframalpha.com/input/?i=world+population+growth&lk=4 Accessed 30 Apr 2014

  • Xu GC, Liu RQ, Wang J (2009) Electrochemical synthesis of ammonia using a cell with a Nafion membrane and SmFe0.7Cu0.3−xNixO3 (x = 0–0.3) cathode at atmospheric pressure and lower temperature. Sci China Ser B-Chem 52:1171–1175

    Article  CAS  Google Scholar 

  • Yandulov DV, Schrock RR (2003) Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301:76–78

    Article  CAS  Google Scholar 

  • Zamfirescu C, Dincer I (2009) Ammonia as a green fuel and hydrogen source for vehicular applications. Fuel Process Technol 90:729–737

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the Tan Yan Kee Foundation and the Gokongwei College of Engineering of De La Salle University for the grant of a professorial chair. Prof Raymond Tan is (once again) thanked for reviewing the manuscript and some very helpful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis F. Razon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razon, L.F. Is nitrogen fixation (once again) “vital to the progress of civilized humanity”?. Clean Techn Environ Policy 17, 301–307 (2015). https://doi.org/10.1007/s10098-014-0835-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-014-0835-3

Keywords

Navigation