Skip to main content
Log in

Zeolites from coal fly ash as efficient sorbents for cadmium ions

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

The aim of present study was to verify the applicability of fly ash from the combustion of brown-coal in power plant ENO Nováky (Slovak Republic) for synthesis of zeolitic materials ZM1 and ZM3 by hydrothermal alternation with 1 M NaOH and 3 M NaOH, respectively. For characterization of fly ash and zeolitic material, instrumental methods such as XRF analysis and SEM-EDX analysis were used. Obtained zeolitic materials were applied as sorbents to remove Cd2+ ions as a model of toxic heavy metals from water solutions. It was shown that cadmium removal is a time dependent process significantly influenced by solution pH. Using the Akaike's information criteria, we found that the sorption of cadmium by both types of zeolites obeys Langmuir adsorption isotherm model. The maximum sorption capacities Q max at pH 6.0 calculated from Langmuir isotherm were 696 ± 22 μmol Cd2+ g−1 of ZM1 and 1,160 ± 44 μmol Cd2+ g−1 of ZM3. Box–Behnken design under the response surface methodology was used for investigation of interaction and competitive effects in binary metal system Cd2+–Cs+. Three independent variables (initial concentration of cadmium ions, initial concentration of cesium ions and solution pH) were correlate to response (cadmium removal) using a second-order polynomial model. The adequacy of model was confirmed by analysis of variance, coefficient of determination (R 2), and adjusted R 2. Maximum sorption capacities of ZM3 in binary system Cd2+–Cs+ were 1,025 μmol Cd2+ g−1 and 1,231 μmol Cs+ g−1, indicating higher affinity for Cs+ comparing with Cd2+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adamczyk Z, Białecka B (2005) Hydrothermal synthesis of zeolites from polish coal fly ash. Pol J Environ Stud 14:713–719

    CAS  Google Scholar 

  • Ahmaruzzaman M (2010) Review on the utilization of fly ash. Prog Energy Combust Sci 36:327–363

    Article  CAS  Google Scholar 

  • Ahmed NM, Emira HS, Selim MM (2011) Anticorrosive performance of ion-exchange zeolites in alkyd-based paints. Pigment Resin Technol 40:91–99

    Article  CAS  Google Scholar 

  • ASTM C 618-92a (1994) Standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in Portland cement concrete. Annual book of ASTM standards, vol 04.02. ASTM International, West Conshohocken

    Google Scholar 

  • Bačíková M, Števulová N (2009) Examination of fly ash utilization suitability for the production of cement–concrete cover of pavement. Chem Technol 50:24–29

    Google Scholar 

  • Chojnacki A, Chojnacka K, Hoffman J, Górecki H (2004) The application of natural zeolites for mercury removal: from laboratory tests to industrial scale. Miner Eng 17:933–937

    Article  CAS  Google Scholar 

  • Covarrubias C, Arriagada R, Yanez J, Garcia R, Angelica M, Barros SD, Arroyo P, Sousa-Aguiar EF (2005) Removal of chromium(III) from tannery effluents, using a system of packed columns of zeolite and activated carbon. J Chem Tech Biot 80:899–908

    Article  CAS  Google Scholar 

  • Cundy CS, Cox PA (2005) The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Micropor Mesopor Mater 82:1–78

    Article  CAS  Google Scholar 

  • Ćurković L, Cerjan-Stefanović Š, Filipan T (1997) Metal ion exchange by natural and modified zeolites. Water Res 31:1379–1382

    Article  Google Scholar 

  • El-Kamash AM, Zaki AA, El Geleel MA (2005) Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A. J Hazard Mater B127:211–220

    Article  Google Scholar 

  • Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interface Sci 280:309–314

    Article  CAS  Google Scholar 

  • Franus W (2012) Characterization of X-type zeolite prepared from coal fly ash. Pol J Environ Stud 21:337–343

    CAS  Google Scholar 

  • Hernández-Montoya V, Pérez-Cruz MA, Mendoza-Castillo DI, Moreno-Virgen MR, Bonilla-Petriciolet A (2013) Competitive adsorption of dyes and heavy metals on zeolitic structures. J Environ Manag 116:213–221

    Article  Google Scholar 

  • Hui KS, Chao CYH, Kot SC (2005) Removal of mixed heavy metal ions in wastewater by zeolite A4 and residual products from recycled coal fly ash. J Hazard Mater B127:89–101

    Article  Google Scholar 

  • Izidoro JC, Abbott JE, Fungaro DA, Wang S (2013) Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems. Fuel 103:827–834

    Article  CAS  Google Scholar 

  • Janoš P, Buchtová H, Rýznarová M (2003) Sorption of dyes from aqueous solutions onto fly ash. Water Res 37:4938–4944

    Article  Google Scholar 

  • Junak J, Števulová N, Sičáková A (2009) Cement replacement by modified coal fly ash in concrete. Proceedings of the 11th international conference on environmental science and technology. Chania, Greece, September 3–5, B394–B399

  • Karagozoglu B, Tasdemir M, Demirbas E, Kobya M (2007) The adsorption of basic dye (Astrazon Blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: kinetic and equilibrium studies. J Hazard Mater 147:297–306

    Article  CAS  Google Scholar 

  • Koukouzas N, Vasilatos C, Itskos G, Mitsis I, Moutsatsou A (2010) Removal of heavy metals from wastewater using CFB-coal fly ash zeolitic materials. J Hazard Mater 173:581–588

    Article  CAS  Google Scholar 

  • Leinonen H, Lehto J (2001) Purification of metal finishing waste waters with zeolites and activated carbons. Waste Manag Res 19:45–47

    Article  CAS  Google Scholar 

  • Marešová J, Pipíška M, Rozložník M, Horník M, Remenárová L, Augustín J (2011) Cobalt and strontium sorption by moss biosorbent: modeling of single and binary metal systems. Desalination 266:134–141

    Article  Google Scholar 

  • Medina A, Gamero P, Querol X, Moreno N, De León B, Almanza M, Vargas G, Izquiedo M, Font O (2010) Fly ash from a Mexican mineral coal I: mineralogical and chemical characterization. J Hazard Mater 181:82–90

    Article  CAS  Google Scholar 

  • Merrikhpour H, Jalali M (2013) Comparative and competitive adsorption of cadmium, copper, nickel, and lead ions by Iranian natural zeolite. Clean Technol Environ Policy 15:303–316

    Article  CAS  Google Scholar 

  • Mezencevová A, Števulová A (2002) Characterization of fluidized fly ashes and possibilities of modifications of their properties by mechanical activation. Chem Listy 96:515–516

    Google Scholar 

  • Michalíková F (1999) Energetické odpady—zdroj surovín. Acta Montan Slov 4:281–288 (in Slovak)

    Google Scholar 

  • Miyaji F, Masuda S, Suyama Y (2010) Adsorption removal of lead and cadmium ions from aqueous solution with coal fly ash-derived zeolite/sepiolite composite. J Ceram Soc Jpn 118:1062–1066

    Article  CAS  Google Scholar 

  • Musyoka NM, Petrik LF, Gitari WM, Balfour G, Hums E (2012) Optimization of hydrothermal synthesis of pure phase zeolite Na-P1 from South African coal fly ashes. J Environ Sci Health A 47:337–350

    Article  CAS  Google Scholar 

  • Panuccio MR, Sorgonà A, Rizzo M, Cacco G (2009) Cadmium adsorption on vermiculite, zeolite and pumice: batch experimental studies. J Environ Manag 90:364–374

    Article  CAS  Google Scholar 

  • Pehlivan E, Cetin S, Yanik BH (2006) Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash. J Hazard Mater B135:193–199

    Article  Google Scholar 

  • Pipíška M, Horník M, Remenárová L, Augustín J, Lesný J (2010) Biosorption of cadmium, cobalt and zinc by moss Rhytidiadelphus squarrosus in the single and binary component systems. Acta Chim Slov 57:163–172

    Google Scholar 

  • Querol X, Umaña JC, Plana F, Alastuey A, López-Soler A, Medinaceli A, Valero A, Domingo MJ, Garcia-Rojo E (2001) Synthesis of Na zeolites from fly ash in a pilot plant scale: examples of potential environmental applications. Fuel 80:857–865

    Article  CAS  Google Scholar 

  • Querol X, Moreno N, Umaña JC, Alastuey A, Hermández E (2002) Synthesis of zeolites from fly ash: an overview. Int J Coal Geol 50:413–423

    Article  CAS  Google Scholar 

  • Rao GPC, Satyaveni S, Ramesh A, Seshaiah K, Murthy KSN, Choudary NV (2006) Sorption of cadmium and zinc from aqueous solutions by zeolite 4A, zeolite 13X and bentonite. J Environ Manag 81:265–272

    Article  CAS  Google Scholar 

  • Remenárová L, Pipíška M, Horník M, Rozložník M, Augustín J, Lesný J (2012) Biosorption of cadmium and zinc by activated sludge from single and binary solutions: mechanism, equilibrium and experimental design study. J Taiwan Inst Chem Eng 43:433–443

    Article  Google Scholar 

  • Ríos CAR, Williams CD, Roberts CL (2009) A comparative study of two methods for the synthesis of fly ash-based sodium and potassium type zeolites. Fuel 88:1403–1416

    Article  Google Scholar 

  • Şahan T, Öztürk D (2013) Investigation of Pb(II) adsorption onto pumice samples: application of optimization method based on fractional factorial design and response surface methodology. Clean Technol Environ Policy. doi:10.1007/s10098-013-0673-8

    Google Scholar 

  • Shah B, Mistry C, Shah A (2013) Seizure modeling of Pb(II) and Cd(II) from aqueous solution by chemically modified sugarcane bagasse fly ash: isotherms, kinetics, and column study. Environ Sci Pollut Res 20:2109–2209

    Article  Google Scholar 

  • Shawabked R, Al-Harahsheh A, Hami M, Khlaifat A (2004) Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater. Fuel 83:981–985

    Article  Google Scholar 

  • Sprynskyy M, Buszewski B, Terzyk AP, Namieśnik J (2006) Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J Colloid Interface Sci 304:21–28

    Article  CAS  Google Scholar 

  • Srivastava VC, Mall ID, Mishra IM (2006) Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash. Chem Eng J 117:79–91

    Article  CAS  Google Scholar 

  • Srivastava VCH, Mall ID, Mishra IM (2009) Competitive adsorption of cadmium(II) and nickel(II) metal ions from aqueous solution onto rice husk ash. Chem Eng Process 48:370–379

    Article  CAS  Google Scholar 

  • Sun D, Zhang X, Wu Y, Liu X (2010) Adsorption of anionic dyes from aqueous solution on fly ash. J Hazard Mater 181:335–342

    Article  CAS  Google Scholar 

  • Turabik M (2008) Adsorption of basic dyes from single and binary component systems onto bentonite: simultaneous analysis of Basic Red 46 and Basic Yellow 28 by first order derivative spectrophotometric analysis method. J Hazard Mater 158:52–64

    Article  CAS  Google Scholar 

  • Vedaraman N, Shamshath Begum SS, Srinivasan SV (2013) Response surface methodology for decolourisation of leather dye using ozonation in a packed bed reactor. Clean Technol Environ Policy 15:607–616

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to give special thanks to Juraj Miština, M. A. for English language proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Pipíška.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remenárová, L., Pipíška, M., Florková, E. et al. Zeolites from coal fly ash as efficient sorbents for cadmium ions. Clean Techn Environ Policy 16, 1551–1564 (2014). https://doi.org/10.1007/s10098-014-0728-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-014-0728-5

Keywords

Navigation