Skip to main content

Advertisement

Log in

Cost-efficient emission abatement of energy and transportation technologies: mitigation costs and policy impacts for Belgium

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

In the light of global warming, this paper develops a framework to compare energy and transportation technologies in terms of cost-efficient GHG emission reduction. We conduct a simultaneous assessment of economic and environmental performances through life cycle costing and life cycle assessment. To calculate the GHG mitigation cost, we create reference systems within the base scenario. Further, we extend the concept of the mitigation cost, allowing (i) comparision of technologies given a limited investment resource, and (ii) evaluation of the direct impact of policy measures by means of the subsidized mitigation cost. The framework is illustrated with a case of solar photovoltaics (PV), grid powered battery electric vehicles (BEVs), and solar powered BEVs for a Belgian small and medium sized enterprise. The study’s conclusions are that the mitigation cost of solar PV is high, even though this is a mature technology. The emerging mass produced BEVs on the other hand are found to have a large potential for cost-efficient GHG mitigation as indicated by their low cost of mitigation. Finally, based on the subsidized mitigation cost, we conclude that the current financial stimuli for all three investigated technologies are excessive when compared to the CO2 market value under the EU Emission Trading Scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

α (%/year):

Annual system performance deterioration rate

β (kWh/kWp):

Irradiation factor

BEV (number of vehicles):

Battery electric vehicle

D t (km/year):

Annual travel distance

(E)ID (%):

(Elevated) investment deduction

Electr (kWh):

Electricity

Fuse (l/100 km):

Fuel use

Gasol (l):

Gasoline

GCC (€/MWh):

Green current certificates

GHG (CO2-eq.):

Greenhouse gas

ICEV (number of vehicles):

Internal combustion engine vehicle

INS (€):

Insurance cost

I 0 (€):

Investment cost (capital)

MaC (€):

Maintenance cost

MC (€/ton avoided CO2-eq.):

Mitigation cost

n (year):

Lifetime

OC (€):

Operation cost

\(\dot{P}\) (%/year):

Real annual price increase

PV (kWp):

Photovoltaics

Q (€):

Economic life cycle cost

r (%):

Discount rate

S/T (€):

Subsidies/taxes

T n (€/year):

Annual traffic tax

T 0 (€):

One off vehicle registration tax

t r (%):

Tax rate

UC (€):

Unit cost (excluding direct taxes and subsidies)

References

  • Badcock J, Lenzen M (2010) Subsidies for electricity-generating technologies: a review. Energy Policy 38(9):5038–5047. doi:10.1016/j.enpol.2010.04.031

    Article  Google Scholar 

  • Baumol WJ (1968) Social rate of discount. Am Econ Rev 58(4):788–802

    Google Scholar 

  • Belgisch Staatsblad (2009) Programmawet 23.12.2009. www.ejustice.fgov.be. Accessed 12 Sept 2012

  • Belgische Petroleum Federatie (2012) Maximumprijzen. www.petrolfed.be. Accessed 02 Oct 2012

  • Boardman AE, Greenberg DH, Vining AR, Weimer DL (2011) Cost-benefit analysis: concepts and practice, 4th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Chen L, Zhang H, Guo Y (2013) Estimating the economic cost of emission reduction in Chinese vehicle industry based on multi-objective programing. Clean Technol Environ Policy 15(4):727–734. doi:10.1007/s10098-012-0560-8

    Article  CAS  Google Scholar 

  • De Schepper E, Van Passel S, Lizin S (2012) SDEWES12-0485: Economic benefits of combined technologies: electric vehicles and PV solar power. Paper presented at the 7th conference on sustainable development of energy, water and environment systems, Ohrid, Macedonia

  • Delucchi MA, Murphy JJ (2008) How large are tax subsidies to motor-vehicle users in the US? Transp Policy 15(3):196–208. doi:10.1016/j.tranpol.2008.03.001

    Article  Google Scholar 

  • European Commission (2009a) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/EC and 2003/30/EC, Brussels, Belgium

  • European Commission (2009b) Part III: annexes to impact assessment guidelines, Brussels, Belgium

  • European Commission (2012) Commission staff working document—information provided on the functioning of the EU ETS, the volumes of GHG emission allowances auctioned and freely allocated and the impact of the surplus of allowances in the period up to 2020, Brussels, Belgium

  • European Union (2005–2011) Car price reports 2005–2011. http://ec.europa.eu. Accessed 12 Sept 2012

  • Eurostat (2012) Electricity prices for industrial consumers. http://epp.eurostat.ec.europa.eu/. Accessed 17 Oct 2012

  • EU Coalition - McKinsey (2010) A portfolio of power-trains for Europe: a fact-based analysis—the role of battery electric vehicles, plug-in hybrids and fuel cell electric vehicles, Brussels, Belgium

  • Federale Overheidsdienst Financiën (1992) Wetboek van de Inkomstenbelastingen 1992, Brussels, Belgium

  • Federale Overheidsdienst Financiën (2005–2011) Tarieven van de verkeersbelasting 2005–2011. http://koba.minfin.fgov.be. Accessed 02 Jun 2012

  • Federale Overheidsdienst Financiën (2011–2012) Tarieven van de verkeersbelasting 2011–2012. http://koba.minfin.fgov.be. Accessed 02 Jun 2012

  • Federale Overheidsdienst Financiën (2012) Aanvullende codes—Accijnzen en milieutaksen. http://tarweb.minfin.fgov.be. Accessed 18 Oct 2012

  • Ingwersen W, Garmestani A, Gonzalez M, Templeton J (2013) A systems perspective on responses to climate change. Clean Technol Environ Policy 1–12. doi:10.1007/s10098-012-0577-z

  • International Energy Agency (2012) CO2 emissions from fuel combustion—highlights, Paris, France

  • Kumar A, Bhattacharya SC, Pham HL (2003) Greenhouse gas mitigation potential of biomass energy technologies in Vietnam using the long range energy alternative planning system model. Energy 28(7):627–654. doi:10.1016/s0360-5442(02)00157-3

    Article  CAS  Google Scholar 

  • Laurinkeviciute A, Stasiskiene Z (2011) SMS for decision making of SMEs. Clean Technol Environ Policy 13(6):797–807. doi:10.1007/s10098-011-0349-1

    Article  Google Scholar 

  • Lazarus M, Heaps C, Raskin P (1995) Long range energy alternatives planning (LEAP) system. Reference manual. Boston Stockholm Environment Institute (SEI), Stockholm

    Google Scholar 

  • Lorie JH, Savage LJ (1955) Three problems in rationing capital. J Bus 28(4):229–239

    Google Scholar 

  • Nielsen TD, Cruickshank C, Foged S, Thorsen J, Krebs FC (2010) Business, market and intellectual property analysis of polymer solar cells. Sol Energy Mater Sol Cells 94(10):1553–1571. doi:10.1016/j.solmat.2010.04.074

    Article  CAS  Google Scholar 

  • Nissan (2012a) Algemene prijslijst België. www.nissan.be. Accessed 24 Oct 2012

  • Nissan (2012b) Nissan leaf. www.nissan.be. Accessed 24 Oct 2012

  • Nissan (2012c) Nissan note. www.nissan.be. Accessed 24 Oct 2012

  • Sathaye J, Meyers S (1995) Greenhouse gas mitigation assessment: a guidebook. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Sims REH, Rogner H-H, Gregory K (2003) Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation. Energy Policy 31(13):1315–1326. doi:10.1016/s0301-4215(02)00192-1

    Article  Google Scholar 

  • Súri M, Huld TA, Dunlop ED, Ossenbrink HA (2007) Potential of solar electricity generation in the European Union member states and candidate countries. Sol Energy 81(10):1295–1305. doi:10.1016/j.solener.2006.12.007

    Article  Google Scholar 

  • Vlaams Energieagentschap (2012) Groene stroomcertificaten voor fotovoltaïsche zonnepanelen. www.energiesparen.be. Accessed 04 Jun 2012

  • Weiss M, Patel MK, Junginger M, Perujo A, Bonnel P, van Grootveld G (2012) On the electrification of road transport—learning rates and price forecasts for hybrid-electric and battery-electric vehicles. Energy Policy 48:374–393. doi:10.1016/j.enpol.2012.05.038

    Article  Google Scholar 

  • Woodward DG (1997) Life cycle costing—theory, information acquisition and application. Int J Proj Manage 15(6):335–344. doi:10.1016/s0263-7863(96)00089-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen De Schepper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Schepper, E., Van Passel, S., Lizin, S. et al. Cost-efficient emission abatement of energy and transportation technologies: mitigation costs and policy impacts for Belgium. Clean Techn Environ Policy 16, 1107–1118 (2014). https://doi.org/10.1007/s10098-014-0713-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-014-0713-z

Keywords

Navigation