Skip to main content
Log in

Heat-transfer modeling as a design tool for improving solar water disinfection (SODIS) containers

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

A simplified heat-transfer model has been developed to effectively simulate thermal performance of water containers used in solar water disinfection (SODIS) applications. The purpose of the model is to facilitate accurate, fast, and uncomplicated prediction of thermal performance of different SODIS-container designs and configurations, enabling developers to analyze new design ideas without the needs for field experiments, which are typically cumbersome and difficult to compare. The model utilizes electromagnetic absorption coefficients and other thermal properties of container materials, and water to establish control-volume heat-transfer equations that can predict the water temperature. The model’s simulated results of basic container designs agreed reasonably well with experimental results. Preliminary enhancements to the water container design were implemented—namely painting the container’s underside black and covering the container with a clear plastic bag—with the aim to achieve higher disinfection efficacy through higher water temperatures, in accordance with the fundamentals of SODIS mechanisms. The heat-transfer model predicted that both design enhancements would significantly increase the water temperature, with the black coating being more effective. Subsequent field experiments confirmed the model’s predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Athienitis A, Liu C, Hawes D, Banu D, Feldman D (1997) Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Build Environ 32(5):405–410

    Article  Google Scholar 

  • Belessiotis V, Mathioulakis E (2002) Analytical approach of thermosyphon solar domestic hot water system performance. Sol Energy 72(4):307–315. doi:10.1016/S0038-092X(02)00011-7

    Article  Google Scholar 

  • Bird RE, Hulstrom RL, Lewis L (1983) Terrestrial solar spectral data sets. Sol Energy 30(6):563–573

    Article  Google Scholar 

  • Chaurasia PBL, Twidell J (2001) Collector cum storage solar water heaters with and without transparent insulation material. Sol Energy 70(5):403–416. doi:10.1016/S0038-092X(00)00158-4

    Article  CAS  Google Scholar 

  • Churchill SW, Chu HH (1975) Correlating equations for laminar and turbulent free convection from a horizontal cylinder. Int J Heat Mass Transf 18(9):1049–1053

    Article  Google Scholar 

  • Chyng JP, Lee CP, Huang BJ (2003) Performance analysis of a solar-assisted heat pump water heater. Sol Energy 74(1):33–44. doi:10.1016/S0038-092X(03)00110-5

    Article  Google Scholar 

  • Cristofari C, Notton G, Poggi P, Louche A (2002) Modelling and performance of a copolymer solar water heating collector. Sol Energy 72(2):99–112. doi:10.1016/S0038-092X(01)00092-5

    Article  CAS  Google Scholar 

  • Das TK (2002) Evaluating the life cycle environmental performance of chlorine disinfection and ultraviolet technologies. Clean Technol Environ Policy 4(1):32–43

    Article  CAS  Google Scholar 

  • David GL (2001) Analytical chemistry. University Press, Hyderabad

    Google Scholar 

  • Esen M (2000) Thermal performance of a solar-aided latent heat store used for space heating by heat pump. Sol Energy 69(1):15–25

    Article  CAS  Google Scholar 

  • Hatton A, James D, Swire H (1970) Combined forced and natural convection with low-speed air flow over horizontal cylinders. J Fluid Mech 42(Part 1):17–31

    Article  Google Scholar 

  • Heidarpour F, Ghani WWAK, Fakhru’l-Razi A, Sobri S, Heydarpour V, Zargar M, Mozafari M (2011) Complete removal of pathogenic bacteria from drinking water using nano silver-coated cylindrical polypropylene filters. Clean Technol Environ Policy 13(3):499–507

    Article  CAS  Google Scholar 

  • Ho CD, Chen TC (2006) The recycle effect on the collector efficiency improvement of double-pass sheet-and-tube solar water heaters with external recycle. Renew Energy 31(7):953–970. doi:10.1016/j.renene.2005.05.016

    Article  CAS  Google Scholar 

  • Jain R (2012) Providing safe drinking water: a challenge for humanity. Clean Technol Environ Policy 14(1):1–4

    Article  Google Scholar 

  • Khaengraeng R, Reed RH (2005) Oxygen and photoinactivation of Escherichia coli in UVA and sunlight. J Appl Microbiol 99(1):39–50. doi:10.1111/j.1365-2672.2005.02606.x

    Article  CAS  Google Scholar 

  • Lawand T, Alward R, Odeyemi O, Hahn J, Kandpal T, Ayoub J (1988) Solar water disinfection: proceedings of a workshop held at the Brace Research Institute. Workshop on solar water disinfection. International Development Research Centre (IDRC), Montreal

    Google Scholar 

  • Lee DW, Sharma A (2007) Thermal performances of the active and passive water heating systems based on annual operation. Sol Energy 81(2):207–215. doi:10.1016/j.solener.2006.03.015

    Article  CAS  Google Scholar 

  • Lide DR (2004) CRC handbook of chemistry and physics 2004–2005: a ready-reference book of chemical and physical data. CRC press, Boca Raton

    Google Scholar 

  • Mathioulakis E, Belessiotis V (2002) A new heat-pipe type solar domestic hot water system. Sol Energy 72(1):13–20. doi:10.1016/S0038-092X(01)00088-3

    Article  CAS  Google Scholar 

  • McGuigan KG, Conroy RM, Mosler H-J, Preez MD, Ubomba-Jaswa E, Fernandez-Ibañez P (2012) Solar water disinfection (SODIS): a review from bench-top to roof-top. J Hazard Mater 235–236:29–46. doi:10.1016/j.jhazmat.2012.07.053

    Article  Google Scholar 

  • McGuigan KG, Samaiyar P, du Preez M, Conroy RM (2011) High compliance randomized controlled field trial of solar disinfection of drinking water and its impact on childhood diarrhea in rural cambodia. Environ Sci Technol 45(18):7862–7867. doi:10.1021/es201313x

    Article  CAS  Google Scholar 

  • Ong K (1995a) Thermal performance of solar air heaters: mathematical model and solution procedure. Sol Energy 55(2):93–109

    Article  CAS  Google Scholar 

  • Ong KS (1995b) Thermal performance of solar air heaters: mathematical model and solution procedure. Sol Energy 55(2):93–109. doi:10.1016/0038-092X(95)00021-I

    Article  CAS  Google Scholar 

  • Raab S, Mangold D, Müller-Steinhagen H (2005) Validation of a computer model for solar assisted district heating systems with seasonal hot water heat store. Sol Energy 79(5):531–543

    Article  Google Scholar 

  • Segelstein DJ (2011) The complex refractive index of water. University of Missouri, Kansas City

    Google Scholar 

  • Smith RJ, Kehoe SC, McGuigan KG, Barer MR (2000) Effects of simulated solar disinfection of water on infectivity of Salmonella typhimurium. Lett Appl Microbiol 31(4):284–288

    Article  CAS  Google Scholar 

  • Sommer B, Marino A, Solarte Y, Salas M, Dierolf C, Valiente C, Mora D, Rechsteiner R, Setter P, Wirojanagud W (1997) SODIS—an emerging water treatment process. AQUA(OXFORD) 46(3):127–137

    Google Scholar 

  • Thailand Meteorological Department (2012) Diurnal variation of global, beam, and diffuse radiation. Accessed 11 Jan 2013. http://ozone.tmd.go.th/solarchart.html

  • Wegelin M, Canonica S, Mechsner K, Fleischmann T, Pesaro F, Metzler A (1994) Solar water disinfection: scope of the process and analysis of radiation experiments. Aqua 43(4):154–169

    Google Scholar 

  • WHO/UNICEF Joint Monitoring Programme for Water Supply and Sanitation (2005) Water for life: making it happen. World Health Organization, Geneva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sappinandana Akamphon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukkasi, S., Akamphon, S. Heat-transfer modeling as a design tool for improving solar water disinfection (SODIS) containers. Clean Techn Environ Policy 16, 1773–1780 (2014). https://doi.org/10.1007/s10098-013-0689-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-013-0689-0

Keywords

Navigation