Skip to main content
Log in

Applications of ionic liquids in organic synthesis and catalysis

  • Review
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

In recent years, various novel and greener methodologies have been developed using ionic liquids (ILs). In these reactions, IL has played multiple roles like catalyst, solvent, and catalyst support. In some cases, it was observed that IL enables efficient catalytic reactions in comparison with conventional molecular solvents. On the other hand, although a number of catalytic reaction processes in which ILs are used have been established in industry, there were also some unexpected problems, such as unintelligible aberrance or degradation of so-called task-specific ILs occurring in reaction processes and on the pilot plant scale. Also, several urgent questions regarding the fundamental aspects of ILs particularly toxicity and greener preparation methods need to be clarified. Several industrial applications of ILs are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Fig. 2
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Fig. 3
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Fig. 4
Fig. 5
Fig. 6
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53

Similar content being viewed by others

References

  • Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2002) Quaternary ammonium zinc- or tin-containing ionic liquids: water insensitive, recyclable catalysts for Diels–Alder reactions. Green Chem 4:24–26

    CAS  Google Scholar 

  • Abu-Reziq R, Wang D, Post M, Alper H (2007) Platinum nanoparticles supported on ionic liquid-modified magnetic nanoparticles: selective hydrogenation catalysts. Adv Synth Catal 349:2145–2150

    CAS  Google Scholar 

  • Akbari J, Heydari A, Kalhor HR, Kohan SA (2010) Sulfonic acid functionalized ionic liquid in combinatorial approach, a recyclable and water tolerant-acidic catalyst for one-pot Friedlander quinoline synthesis. J Comb Chem 12:137–140

    CAS  Google Scholar 

  • Arduengo AJ (1999) Looking for stable carbenes: the difficulty in starting A new. Acc Chem Res 32:913–921

    CAS  Google Scholar 

  • Arhancet JP, Davis DE, Merola JS, Hanson BE (1989) Hydroformylation by supported aqueous-phase catalysis: a new class of heterogeneous catalysts. Nature 339:454–455

    CAS  Google Scholar 

  • Axens (2007) Dimersol-X. http://www.axens.net/html-gb/offer/offer_processes_70.html.php

  • Baker J (2004) ECN Innovation Awards 2004—the winners! Eur Chem News 18–19

  • BASF (2005a) Acid scavenging: the BASIL process. http://www2.basf.de/en/intermed/nbd/products/ionic_liquids/processes/acid.htm?id=mGwEvAf1Ebw23hM

  • BASF (2005b) Chlorination with nucleophilic HCl. http://www2.basf.de/en/intermed/nbd/products/ionic_liquids/processes/chlorination.htm?id=mGwEvAf1Ebw23hM

  • Beletskaya IP, Cheprakov AV (2000) The Heck reaction as a sharpening stone of palladium catalysis. Chem Rev 100:3009–3066

    CAS  Google Scholar 

  • Bo W, Ming YL, Shaun SJ (2003) Ionic liquid-regulated sulfamic acid: chemoselective catalyst for the transesterification of β-ketoesters. Tetrahedron Lett 44:5037–5039

    Google Scholar 

  • Boon JA, Levisky JA, Pflug JL, Wilkes JS (1986) Friedel–Crafts reactions in ambient-temperature molten salts. J Org Chem 51:480–483

    CAS  Google Scholar 

  • Central Glass Co. (Japan) (2007). http://www.cgco.co.jp/english/index.html

  • Chauvin Y, Gaillard JF, Quang DV, Andrews JW (1974) The IFP Dimersol process for dimerization of C3 and C4 olefinic cuts. Chem Ind 375–378

  • Chauvin Y, Gilbert B, Guibard I (1990) Catalytic dimerization of alkenes by nickel complexes in organochloroaluminate molten salts. J Chem Soc Chem Commun 1715–1716

  • Chauvin Y, Hirschauer A, Olivier H (1994) Alkylation of isobutane with 2-butene using 1-butyl-3-methylimidazolium chloride-aluminium chloride molten salts as catalysts. J Mol Catal 92:155–165

    CAS  Google Scholar 

  • Chauvin Y, Einloft S, Olivier H (1995a) Catalytic dimerization of propene by nickel-phosphine complexes in 1-butyl-3-methylimidazolium chloride/AlEtxCl3−x (x = 0, 1) ionic liquids. Ind Eng Chem Res 34:1149–1155

    CAS  Google Scholar 

  • Chauvin Y, Mussmann L, Olivier H (1995b) A novel class of versatile solvents for two-phase catalysis: hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1,3-dialkylimidazolium salt. Angew Chem Int Ed Engl 34:2698–2700

    CAS  Google Scholar 

  • Chauvin Y (2006) Olefin Metathesis: the early days (Nobel Lecture). Angew Chem Int Ed 45:3740–3747

    Google Scholar 

  • Chen W, Zhang Y, Zhu L, Lan J, Xie R, You J (2007) A concept of supported amino acid ionic liquids and their application in metal scavenging and heterogeneous catalysis. J Am Chem Soc 129:13879–13886

    CAS  Google Scholar 

  • Cole AC, Jensen JL, Ntai I, Tran KLT, Weaver KJ, Forbes DC, Davis JH Jr (2002) Novel Brønsted acidic ionic liquids and their use as dual solvent-catalysts. J Am Chem Soc 124:5962–5963

    CAS  Google Scholar 

  • Cull SG, Holbrey JD, Vargas-Mora V, Seddon KR, Lye GJ (2000) Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnol Bioeng 69:227–233

    CAS  Google Scholar 

  • De Bellefon C, Pollet E, Grenouillet P (1999) Molten salts (ionic liquids) to improve the activity, selectivity and stability of the palladium catalysed Trost–Tsuji C–C coupling in biphasic media. J Mol Catal A Chem 145:121–126

    Google Scholar 

  • De Munck NA, Verbruggen MW, De Leur JE, Scholten JJF (1981) Gas phase hydroformylation of propylene with porous resin anchored rhodium complexes part II. The catalytic performance. J Mol Catal 331–342

  • Deshmukh KM, Qureshi ZS, Nandurkar NS, Bhanage BM (2009) One-pot synthesis of β-amido ketones using Bronsted acidic ionic liquid as an efficient and reusable catalyst. Can J Chem 81:401–405

    Google Scholar 

  • Deshmukh KM, Qureshi ZS, Dhake KP, Bhanage BM (2010) Transesterification of dimethyl carbonate with phenol using Brønsted and Lewis acidic ionic liquids. Catal Commun 12:207–211

    CAS  Google Scholar 

  • Deshmukh KM, Qureshi ZS, Patil YP, Bhanage BM (2012) Ionic liquid [NMP]+HSO4 : an efficient and recyclable catalyst for the synthesis of 1-amidoalkyl-2-naphthols and 1-carbamatoalkyl-2-naphthols under solvent free conditions. Synth Commun 42:93–101

    CAS  Google Scholar 

  • Dhake KP, Qureshi ZS, Singhal RS, Bhanage BM (2009) Candida antarctica lipase B-catalyzed synthesis of acetamides using [BMIm(PF6)] as a reaction medium. Tetrahedron Lett 50:2811–2814

    CAS  Google Scholar 

  • Dong F, Jun L, Xinli Z, Zhiwen Y, Zuliang L (2007) One-pot green procedure for Biginelli reaction catalyzed by novel task-specific room-temperature ionic liquids. J Mol Catal A Chem 274:208–211

    CAS  Google Scholar 

  • Dong F, Zhenghao F, Zuliang L (2009) Functionalized ionic liquid as the recyclable catalyst for Mannich-type reaction in aqueous media. Catal Commun 10:1267–1270

    CAS  Google Scholar 

  • Du Y, Tian F (2005) Brønsted acidic ionic liquids as efficient and recyclable catalysts for protection of carbonyls to acetals and ketals under mild conditions. Syn Commun 35:2703–2708

    CAS  Google Scholar 

  • Duan Z, Gu Y, Deng Y (2006a) Green and moisture-stable Lewis acidic ionic liquids (choline chloride • xZnCl2) catalyzed protection of carbonyls at room temperature under solvent-free conditions. Catal Commun 7:651–656

    CAS  Google Scholar 

  • Duan Z, Gu Y, Zhang J, Zhu L, Deng Y (2006b) Protic pyridinium ionic liquids: synthesis, acidity determination and their performances for acid catalysis. J Mol Catal A Chem 250:163–168

    CAS  Google Scholar 

  • Dullius JEL, Suarez PAZ, Einloft S, De Souza RF, Dupont J, Fischer J, De Cian A (1998) Selective catalytic hydrodimerization of 1,3-butadiene by palladium compounds dissolved in ionic liquids. Organometallics 17:815–819

    CAS  Google Scholar 

  • Earle MJ, Seddon KR, Adams CJ, Roberts GC (1998) Friedel–Crafts reactions in room temperature ionic liquids. Chem Commun 2097–2098

  • Earle MJ, Seddon KR, McCormac PB (2000) The first high yield green route to a pharmaceutical in a room temperature ionic liquid. Green Chem 2:261–262

    CAS  Google Scholar 

  • Earle MJ, Katdare SP, Seddon KR (2004) Paradigm confirmed: the first use of ionic liquids to dramatically influence the outcome of chemical reactions. Org Lett 6:707–710

    CAS  Google Scholar 

  • Erbeldinger M, Mesiano AJ, Russell J (2000) Enzymatic catalysis of formation of Z-aspartame in ionic liquid-an alternative to enzymatic catalysis in organic solvents. Biotechnol Progr 16:1129–1131

    CAS  Google Scholar 

  • Fadeev AG, Meagher MM (2001) Opportunities for ionic liquids in recovery of biofuels. Chem Commun 3:295–296

    Google Scholar 

  • Favre F, Forestiere A, Hugues F, Olivier-Bourbigou H, Chodorge JA (2005) Butenes dimerisation: from monophasic dimersol™ to biphasic difasol™. Oil Gas Eur Mag 31:83–87

    CAS  Google Scholar 

  • Fei Z, Zhao D, Geldbach TJ, Scopelliti R, Dyson PJ (2004) Brønsted acidic ionic liquids and their zwitterions: synthesis, characterization and pKa determination. Chem Eur J 10:4886–4893

    CAS  Google Scholar 

  • Fried J, Lin C, Mehra M, Kao W, Dalven P (1971) Synthesis and biological activity of prostaglandins and prostaglandin antagonists. Ann N Y Acad Sci 180:38–63

    CAS  Google Scholar 

  • Fukuyama T, Shinmen M, Nishitani S, Sato M, Ryu I (2002) A copper-free Sonogashira coupling reaction in ionic liquids and its application to a microflow system for efficient catalyst recycling. Org Lett 4:1691–1694

    CAS  Google Scholar 

  • Gong K, Fang D, Wang H-L, Liu Z-L (2007) Basic functionalized ionic liquid catalyzed one-pot Mannich-type reaction: three component synthesis of β-amino carbonyl compounds. Monatsh Fur Chem 138:1195–1198

    CAS  Google Scholar 

  • Gordon CM (2001) New developments in catalysis using ionic liquids. App Catal A Gen 222:101–117

    CAS  Google Scholar 

  • Green MJ (2004) Ionic liquids: a road-map to commercialisation. Royal Society of Chemistry, London

    Google Scholar 

  • Grubbs RH (2003) Handbook of metathesis. Wiley, Weinheim

    Google Scholar 

  • Hajipour AR, Rafiee F (2010) Acidic Bronsted ionic liquids. Org Prep Proc Int 42:285–362

    CAS  Google Scholar 

  • Haumann M, Riisager A (2008) Hydroformylation in room temperature ionic liquids (RTILs): catalyst and process developments. Chem Rev 108:1474–1497

    CAS  Google Scholar 

  • Hjortkjaer J, Heinrich B, Capka M (1990) Influence of the ligand structure on SLP-catalysed hydroformylation of propene. Appl Organomet Chem 4:369–374

    CAS  Google Scholar 

  • Howarth J (2000) Oxidation of aromatic aldehydes in the ionic liquid [bmim]PF6. Tetrahedron Lett 41:6627–6629

    CAS  Google Scholar 

  • IFP (2004) Annual Report

  • Jagtap SR, Bhanage BM (2007) Synthesis of propargylic alcohols by base promoted alkynylation of ketones with ethynylbenzene using ionic liquid [(bmim) PF6]. J Chem Res 6:370–372

    Google Scholar 

  • Johnson WS, Brinkmeyer RS, Kapoor UM, Yarnell TL (1977) Asymmetric total synthesis of 11.alpha.-hydroxyprogesterone via a biomimetic polyene cyclization. J Am Chem Soc 99:8341–8343

    CAS  Google Scholar 

  • Johnson KE, Pagni RM, Bartmess J (2007) Brønsted acids in ionic liquids: fundamentals, organic reactions, and comparisons. Monatsh Fur Chem 138:1077–1101

    CAS  Google Scholar 

  • Joni J, Haumann M, Wasserscheid P (2009) Development of a supported ionic liquid phase (SILP) catalyst for slurry-phase Friedel–Crafts alkylations of cumene. Adv Synth Catal 351:423–431

    CAS  Google Scholar 

  • Karthikeyan G, Perumal PT (2004) A mild, efficient and improved protocol for the friedlander synthesis of quinolines using lewis acidic ionic liquid. J Heterocycl Chem 41:1039–1041

    CAS  Google Scholar 

  • Kaufmann DE, Nouroozian M, Henze H (1996) Molten salts as an efficient medium for palladium catalyzed C–C coupling reactions. Synlett 1091–1092

  • Kishi Y, Inagi S, Fuchigami T (2008) Facile and highly efficient synthesis of fluorinated heterocycles via Prins cyclization in ionic liquid hydrogen fluoride salts. Chem Commun 3876–3878

  • Kmentova I, Gotov B, Gajda V, Toma S (2003) The Sonogashira reaction in ionic liquids. Monatsh Chem 134:545–549

    CAS  Google Scholar 

  • Knifton JF (1987) Syngas reactions: part XI. The ruthenium ‘melt’ catalyzed oxonation of internal olefins. J Mol Catal 43:65–77

    CAS  Google Scholar 

  • Knifton JF (1988) Syngas reactions: part XIII. The ruthenium ‘melt’-catalyzed oxonation of terminal olefins. J Mol Catal 47:99–116

    CAS  Google Scholar 

  • Kumar A, Pawar SS (2004) Converting exo-selective Diels–Alder reaction to endo-selective in chloroloaluminate ionic liquids 69:1419–1420

    CAS  Google Scholar 

  • Kumar A, Pawar SS (2005) Catalyzing Henry reactions in chloroaluminate ionic liquids. J Mol Catal A Chem 235:244–248

    CAS  Google Scholar 

  • Lee CW (1999) Diels–Alder reactions in chloroaluminate ionic liquids: acceleration and selectivity enhancement. Tetrahedron Lett 40:2461–2464

    CAS  Google Scholar 

  • Li X, Ma QLL (2010) Ultrasound-assisted solvent-free synthesis of lactic acid esters in novel SO3H-functionalized Brønsted acidic ionic liquids. Ultrason Sonochem 17:752–755

    CAS  Google Scholar 

  • Liang X, Yang J (2010) Synthesis of a novel multi-SO3H functionalized ionic liquid and its catalytic activities for biodiesel synthesis. Green Chem 12:201–204

    CAS  Google Scholar 

  • Liu Y, Wang S-S, Liu W, Wan Q-X, Wu H-H, Gao G-H (2009) Transition-metal catalyzed carbon–carbon couplings mediated with functionalized ionic liquids, supported-ionic liquid phase, or ionic liquid media. Curr Org Chem 13:1322–1346

    CAS  Google Scholar 

  • Maase M, Massonne K, Halbritter K, Noe R, Bartsch M, Siegel W, Stegmann V, Flores M, Huttenloch O Becker M. (2003) Method for the separation of acids from chemical reaction mixtures by means of ionic fluids, World Patent, WO 2003 062171

  • Madeira Lau R, Van Rantwijk F, Seddon KR, Sheldon RA (2000) Lipase-catalyzed reactions in ionic liquids. Org Lett 2:4189

    CAS  Google Scholar 

  • Magnuson DK, Bodley JW, Evans DF (1984) The activity and stability of alkaline phosphatase in solutions of water and the fused salt ethylammonium nitrate. J Sol Chem 13:583–587

    CAS  Google Scholar 

  • Malhotra SV (2007) Ionic liquids in organic synthesis, ACS Symposium, vol 950. Oxford University Press, New York

    Google Scholar 

  • Mehnert CP, Cook RA, Dispenziere NC, Afeworki MJ (2002) Supported ionic liquid catalysis—a new concept for homogeneous hydroformylation catalysis. J Am Chem Soc 124:12932–12933

    CAS  Google Scholar 

  • Mizushima E, Hayashi T, Tanaka M (2001) Palladium-catalysed carbonylation of aryl halides in ionic liquid media: high catalyst stability and significant rate-enhancement in alkoxycarbonylation. Green Chem 3:76–79

    CAS  Google Scholar 

  • Monteiro AL, Zinn FK, De Souza RF, Dupont J (1997) Asymmetric hydrogenation of 2-arylacrylic acids catalyzed by immobilized Ru-BINAP complex in 1-n-butyl-3-methylimidazolium tetrafluoroborate molten salt. Tetrahedron Asymmetry 8:177–179

    CAS  Google Scholar 

  • Morales RC, Tambyrajah V, Jenkins PR, Davies DL, Abbott AP (2004) The regiospecific Fischer indole reaction in choline chloride·2ZnCl2 with product isolation by direct sublimation from the ionic liquid. Chem Commun 158–159

  • Nageshwar Rao I, Prabhakaran EN, Das SK, Iqbal J (2003) Cobalt-catalyzed one-pot three-component coupling route to β-acetamido carbonyl compounds: a general synthetic protocol for γ-lactams. J Org Chem 68:4079–4082

    Google Scholar 

  • Naik PU, Harjani JR, Nara SJ, Salunkhe MM (2004) Ionic liquid enabled sulfamoylation of arenes: an ambient, expeditious and regioselective protocol for aryl sulfonamides. Tetrahedron Lett 45:1933–1936

    CAS  Google Scholar 

  • Nara SJ, Harjani JR, Salunkhe MM (2001) Friedel–Crafts sulfonylation in 1-butyl-3-methylimidazolium chloroaluminate ionic liquids. J Org Chem 66:8616–8620

    CAS  Google Scholar 

  • Nobel Foundation (2007) The Nobel Prize in Chemistry 2005. http://nobelprize.org/nobel_prizes/chemistry/laureates/2005/index.html

  • Olivier-Bourbigou H, Hugues F (2002) Green industrial applications of ionic liquids. In: Rogers RD, Seddon KR, Volkov S (eds) NATO science series II: mathematics, physics and chemistry, vol 92. Kluwer, Dordrecht, pp 67–84

    Google Scholar 

  • Olivier-Bourbigou H, Lecocq V (2002) Science and technology in catalysis, In: Studies in surface science and catalysis, vol 145. Kodansha Ltd., Tokyo, pp 55–60

  • Owens GS, Abu-Omar MM (2000) Methyltrioxorhenium-catalyzed epoxidations in ionic liquids. Chem Commun 1165–1166

  • Palimkar SS, Siddiqui SA, Daniel T, Lahoti RJ, Srinivasan KV (2003) Ionic liquid-promoted regiospecific Friedlander annulation: novel synthesis of quinolines and fused polycyclic quinolines. J Org Chem 68:9371–9378

    CAS  Google Scholar 

  • Panda AG, Bhor MD, Jagtap SR, Bhanage BM (2008a) Selective hydroformylation of unsaturated esters using a Rh/PPh3-supported ionic liquid phase catalyst, followed by a novel route to pyrazolin-5-ones. App Catal A Gen 347:142–147

    CAS  Google Scholar 

  • Panda AG, Jagtap SR, Nandurkar NS, Bhanage BM (2008b) Regioselective hydroformylation of allylic alcohols using Rh/PPh3 supported ionic liquid-phase catalyst, followed by hydrogenation to 1,4-butanediol using Ru/PPh3 supported ionic liquid-phase catalyst. Ind Eng Chem Res 47:969–972

    CAS  Google Scholar 

  • Park SB, Alper H (2003) Recyclable Sonogashira coupling reactions in an ionic liquid, effected in the absence of both a copper salt and a phosphine. Chem Commun 1306–1307

  • Patil YP, Tambade PJ, Deshmukh KM, Bhanage BM (2009) Synthesis of quinazoline-2,4(1H,3H)-diones from carbon dioxide and 2-aminobenzonitriles using [Bmim]OH as a homogeneous recyclable catalyst. Catal Today 148:355–360

    CAS  Google Scholar 

  • Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    CAS  Google Scholar 

  • Qureshi ZS, Deshmukh KM, Bhor MD, Bhanage BM (2009) Bronsted acidic ionic liquid as an efficient and reusable catalyst for transesterification of β-ketoesters. Catal Commun 10:833–837

    CAS  Google Scholar 

  • Qureshi ZS, Deshmukh KM, Tambade PJ, Bhanage BM (2010a) Amberlyst-15 in ionic liquid: an efficient and recyclable reagent for the benzylation and hydroalkylation of β-dicarbonyl compounds. Tetrahedron Lett 51:724–729

    CAS  Google Scholar 

  • Qureshi ZS, Deshmukh KM, Tambade PJ, Dhake KP, Bhanage BM (2010) Amberlyst-15 in ionic liquid: an efficient and recyclable reagent for nucleophilic substitution of alcohols and hydroamination of alkenes. Eur J Org Chem 6233–6238

  • Qureshi ZS, Deshmukh KM, Dhake KP, Bhanage BM (2011) Brønsted acidic ionic liquid: a simple, efficient and recyclable catalyst for regioselective alkylation of phenols and anti-Markovnikov addition of thiols to alkenes. RSC Adv 1:1106–1112

    CAS  Google Scholar 

  • Raed AR, Wang D, Post M, Alper H (2007) Platinum nanoparticles supported on ionic liquid-modified magnetic nanoparticles: selective hydrogenation catalysts. Adv Synth Catal 349:2145–2150

    Google Scholar 

  • Rakita PE (2005) Opportunities for ionic liquid commercialization. AIChE Spring National Meeting, Conference Proceedings, pp 3451

  • Ranu BC, Banerjee S (2005) Ionic liquid as catalyst and reaction medium. The dramatic influence of a task-specific ionic liquid, [bmIm]OH, in Michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles. Org Lett 7:3049–3052

    CAS  Google Scholar 

  • Ranu BC, Jana R (2006) Ionic liquid as catalyst and reaction medium: a simple, efficient and green procedure for Knoevenagel condensation of aliphatic and aromatic carbonyl compounds using basic ionic liquid, [bmIm]OH. Eur J Org Chem 3767–3770

  • Ranu BC, Adak L, Banerjee S (2008) Ionic liquid promoted interrupted Feist–Benary reaction with high diastereoselectivity. Tetrahedron Lett 49:4613–4617

    CAS  Google Scholar 

  • Ranwell A, Tshamano MA (2002) Ionic liquids: industrial applications to green chemistry. In: Rogers RD, Seddon KR (eds) ACS Symposium Series, vol 818. American Chemical Society, Washington DC, pp 147–161

    Google Scholar 

  • Ranwell A, Dwyer CL, Ajam M (2004) Potential application of ionic liquids for olefin oligomerization. IP.com J 4:4

    Google Scholar 

  • Rebeiro GL, Khadilkar BM (2001) Chloroaluminate ionic liquids for Fischer–Indole synthesis. Synthesis 3:370–372

    Google Scholar 

  • Reddy PS, Kanjilal S, Sunitha S, Prasad RBN (2007) Reductive amination of carbonyl compounds using NaBH4 in a Brønsted acidic ionic liquid. Tetrahedron Lett 48:8807–8810

    CAS  Google Scholar 

  • Riisager A, Eriksen KM, Wasserscheid P, Fehrmann R (2003a) Propene and 1-octene hydroformylation with silica-supported, ionic liquid-phase (SILP) Rh-phosphine catalysts in continuous fixed-bed mode. Catal Lett 90:149–153

    CAS  Google Scholar 

  • Riisager A, Wasserscheid P, Van Hal R, Fehrmann R (2003b) Continuous fixed-bed gas-phase hydroformylation using supported ionic liquid-phase (SILP) Rh catalysts. J Catal 219:452–455

    CAS  Google Scholar 

  • Riisager A, Fehrmann R, Flicker S, Van Hal R, Haumann M, Wasserscheid P (2005a) Very stable and highly regioselective supported ionic-liquid-phase (SILP) catalysis: continuous-flow fixed-bed hydroformylation of propene. Angew Chem Int Ed 44:815–819

    CAS  Google Scholar 

  • Riisager A, Fehrmann R, Haumann M, Gorle BSK, Wasserscheid P (2005b) Stability and kinetic studies of supported ionic liquid phase catalysts for hydroformylation of propene. Ind Eng Chem Res 44:9853–9859

    CAS  Google Scholar 

  • Ross L, Chen W, Xu L, Mao L (2001) Ligand effects in palladium-catalyzed Allylic alkylation in ionic liquids. Organometallics 20:138–142

    CAS  Google Scholar 

  • Ryan TA, Ryan C, Seddon EA, Seddon KR (1996) In: Clark RJH (ed) Phosgene and related carbonyl halides, Elsevier, Amsterdam

  • Sadaphal SA, Sonar SS, Kategaonkar AH, Shingare MS (2009) 1-Benzyl-3-methyl imidazolium hydrogen sulphate [bnmim][HSO4] promoted synthesis of α-aminophosphonates. Bull Korean Chem Soc 30:1054–1056

    CAS  Google Scholar 

  • Sahoo S, Joseph T, Halligudi SB (2006) Mannich reaction in Bronsted acidic ionic liquid: a facile synthesis of β-amino carbonyl compounds. J Mol Catal A Chem 244:179–182

    CAS  Google Scholar 

  • Schmid CR, Beck CA, Cronin JS, Staszak MA (2004) Demethylation of 4-methoxyphenylbutyric acid using molten pyridinium hydrochloride on multikilogram scale. Org Process Res Dev 8:670–673

    CAS  Google Scholar 

  • Seddon KR (1997) Ionic liquids for clean technology. J Chem Technol Biotechnol 68:351–356

    CAS  Google Scholar 

  • Sharma YO, Degani MS (2009) CO2 absorbing cost-effective ionic liquid for synthesis of commercially important alpha cyanoacrylic acids: a safe process for activation of cyanoacetic acid. Green Chem 11:526–530

    CAS  Google Scholar 

  • Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 2399–2407

  • Silva SM, Suarez PAZ, De Souza RF, Dupont J (1998) Selective linear dimerization of 1,3-butadiene by palladium compounds immobilized into 1-n-butyl-3-methyl imidazolium ionic liquids. Polym Bull 40:401–405

    CAS  Google Scholar 

  • Stark A, Seddon KR (2007) Ionic liquids, In: Kirk-Othmer Encyclopedia of Chemical Technology, vol 26. Wiley, New York, pp 836–920. doi:10.1002/0471238961.ionisedd.a01

  • Stark A, Ajam M, Green M, Raubenheimer HG, Ranwell A, Ondruschka B (2006) Metathesis of 1-octene in ionic liquids and other solvents: effects of substrate solubility, solvent polarity and impurities. Adv Synth Catal 348:1934–1941

    CAS  Google Scholar 

  • Stegmann V, Massonne K (2005) Method for producing haloalkanes from alcohols. WO Pat. 2005 026089

  • Sunitha S, Kanjilal S, Reddy PS, Prasad RBN (2008) An efficient and chemoselective Brønsted acidic ionic liquid-catalyzed N-Boc protection of amines. Tetrahedron Lett 49:2527–2532

    CAS  Google Scholar 

  • Surette JKD, Green L, Singer RD, (1996) 1-Ethyl-3-methylimidazolium halogenoaluminate melts as reaction media for the Friedel-Crafts acylation of ferrocene. Chem Commun 2753–2754

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquid. J Am Chem Soc 124:4974–4975

    CAS  Google Scholar 

  • Tan SSY, MacFarlane DR (2010) Ionic liquids in biomass processing. In: Kirchner B (ed) Ionic liquids, trends in current chemistry, vol 290. Springer, New York, pp 311–339

    Google Scholar 

  • Thomazeau C, Olivier-Bourbigou H, Magna L, Luts S, Gilbert B (2003) Determination of an acidic scale in room temperature ionic liquids. J Am Chem Soc 125:5264–5265

    CAS  Google Scholar 

  • Toma S, Gotov B, Kmentova I, Solcaniova E (2000) Enantioselective allylic substitution catalyzed by Pd0-ferrocenylphosphine complexes in [bmim][PF6] ionic liquid. Green Chem 2:149–151

    CAS  Google Scholar 

  • van Rantwijk F, Lau RM (2003) Biocatalytic transformations in ionic liquids. Trends Biotechnol 21:131–138

    Google Scholar 

  • Walden P (1914) Ueber die Molekulargrösse und elektrische Leitfähigkeit einiger geschmolzenen salze. Bull Acad Imper Sci 8:405–422

    Google Scholar 

  • Wang W, Shao L, Cheng W, Yang J, He M (2008) Brønsted acidic ionic liquids as novel catalysts for Prins reaction. Catal Commun 9:337–341

    CAS  Google Scholar 

  • Wasserscheid P, Keim W (2000) Ionic liquids—new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772–3789

    CAS  Google Scholar 

  • Wasserscheid P, Welton T (2007) Ionic liquids in synthesis, 2nd edn. Wiley, Weinheim

    Google Scholar 

  • Welton T (1999) Room-temperature ionic liquids. Solvent for synthesis and catalysis. Chem Rev 99:2071–2083

    CAS  Google Scholar 

  • Wasserscheid P, Welton T (2003) Ionic liquids in synthesis. Wiley, Weinheim

    Google Scholar 

  • Welton T (2004) Ionic liquids in catalysis. Coord Chem Rev 248:2459–2477

    CAS  Google Scholar 

  • Williams DBG, Ajam M, Ranwell A (2006) Highly selective metathesis of 1-octene in ionic liquids. Organometallics 25:3088–3090

    CAS  Google Scholar 

  • Wu H-H, Yang F, Cui P, Tang J, He M-Y (2004) An efficient procedure for protection of carbonyls in Brønsted acidic ionic liquid [Hmim]BF4. Tetrahedron Lett 45:4963–4965

    CAS  Google Scholar 

  • Wu Q, Chen H, Han M, Wang D, Wang J (2007) Transesterification of cottonseed oil catalyzed by Brønsted acidic ionic liquids. Ind Eng Chem Res 46:7955–7960

    CAS  Google Scholar 

  • Wu H, Zhang FR, Wan Y, Ye L (2008) An efficient protocol for Henry reaction using basic ionic liquid [bmIm]OH as catalyst and reaction medium. Org Lett 5:209–211

    CAS  Google Scholar 

  • Xing H, Wang T, Zhou Z, Dai Y (2005) Novel Brønsted-acidic ionic liquids for esterifications. Ind Eng Chem Res 44:4147–4150

    CAS  Google Scholar 

  • Xu J-M, Liu B-K, Wu W-B, Qian C, Wu Q, Lin X-F (2006) Basic ionic liquid as catalysis and reaction medium: a novel and green protocol for the Markovnikov addition of N-heterocycles to vinyl esters, using a task-specific ionic liquid, [bmIm]OH. J Org Chem 71:3991–3993

    CAS  Google Scholar 

  • Yadav LDS, Rai A, Rai VK, Awasthi C (2008) Chiral ionic liquid-catalyzed Biginelli reaction: stereoselective synthesis of polyfunctionalized perhydropyrimidines. Tetrahedron 64:1420–1429

    CAS  Google Scholar 

  • Yang Y-L, Kou Y (2004) Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe. Chem Commun 226–227

  • Yang Y, Deng C, Yuan Y (2005) Characterization and hydroformylation performance of mesoporous MCM-41-supported water-soluble Rh complex dissolved in ionic liquids. J Catal 232:108–116

    CAS  Google Scholar 

  • Zhao H, Malhotra SV (2002) Applications of ionic liquids in organic synthesis. Aldrichim Acta 35:75–83

    CAS  Google Scholar 

  • Zhao D, Wu M, Kou Y, Min E (2002) Ionic liquids: applications in catalysis. Today 74:157–189

    CAS  Google Scholar 

  • Zhao G, Jiang T, Gao H, Han B, Huang J, Sun D (2004) Mannich reaction using acidic ionic liquids as catalysts and solvents. Green Chem 6:75–77

    CAS  Google Scholar 

  • Zhao H, Song Z, Olubajo O, Cowins JV (2010) New ether-functionalized ionic liquids for lipase-catalyzed synthesis of biodiesel. Appl Biochem Biotechnol 162:13–23

    CAS  Google Scholar 

  • Zheng X, Qian Y-B, Wang Y (2010) 2-Pyrrolidinecarboxylic acid ionic liquid as a highly efficient organocatalyst for the asymmetric one-pot Mannich reaction. Eur J Org Chem 515–522

  • Zhu H-P, Yang F, Tang J, He M-Y (2003) Brønsted acidic ionic liquid 1-methylimidazolium tetrafluoroborate: a green catalyst and recyclable medium for esterification. Green Chem 5:38–39

    CAS  Google Scholar 

  • Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327

    CAS  Google Scholar 

  • Zim D, De Souza RF, Dupont J, Monteiro AL (1998) Regioselective synthesis of 2-arylpropionic esters by palladium-catalyzed hydroesterification of styrene derivatives in molten salt media. Tetrahedron Lett 39:7071–7074

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhalchandra M. Bhanage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qureshi, Z.S., Deshmukh, K.M. & Bhanage, B.M. Applications of ionic liquids in organic synthesis and catalysis. Clean Techn Environ Policy 16, 1487–1513 (2014). https://doi.org/10.1007/s10098-013-0660-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-013-0660-0

Keywords

Navigation