Skip to main content
Log in

Environmental impact of castor oil catalytic transfer hydrogenation

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

In the vegetable oil chemical industry, hydrogenation is one of the most important processes. An alternative method for vegetable oil hydrogenation is the use of catalytic transfer hydrogenation (CTH), which can utilize organic molecules as hydrogen donors at ambient pressure. These alternative processes should be optimized in relation to the variables required for a good conversion and impacts should also be known to be minimized. An assessment of the environmental impact of laboratory scale chemical processes is an important tool to improve the technological aspects of a process (increased yields, reduced production times, lower costs) and it can also lead to the creation of a cleaner technology. Using the Leopold Matrix, we have succeeded in developing a more efficient and cleaner process for the CTH of castor oil using Raney Ni as a catalyst and cyclohexene or isopropanol as a hydrogen donor solvent. The results of the technical and environmental assessments showed that the extent of conversion for the unsaturation reaction was high (>99 %), and the environmental impact of the process could be significantly reduced to create a cleaner technology. It was found, after process optimization, that the remaining environmental impacts were negative (67.48 %), local (78.95 %), temporary (95.33 %), direct (80.12 %), and reversible (95.32 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chouinard-Dussault P, Bradt L, Ponce-Ortega JM, El-Halwagi MM (2011) Incorporation of process integration into life cycle analysis for the production of biofuels. Clean Technol Environ Policy 13:673–685. doi:10.1007/s10098-010-0339-8

    Article  CAS  Google Scholar 

  • Elamin B, Park JW, Means GE (1988) A simple flow reactor for transfer hydrogenation of olefins. Tetrahedron Lett 29:5599–5600. doi:10.1016/S0040-4039(00)80822-9

    Article  CAS  Google Scholar 

  • Freedman B, Nelson JS, Binder RG, Applewhite TH (1965) Conversion of methyl ricinoleate to methyl 12-ketostearate with Raney nickel. J Am Oil Chem Soc 42:340–344

    Article  CAS  Google Scholar 

  • Gabrovska M, Krstic J, Edreva-Kardjieva R, Stankovic M, Jovanovic D (2006) The influence of the support on the properties of nickel catalysts for edible oil hydrogenation. Appl Catal A 299:73–83. doi:10.1016/j.apcata.2005.10.011

    Article  CAS  Google Scholar 

  • Glaser JA (2012) Green chemistry with nanocatalysts. Clean Technol Environ Policy 14:513–520. doi:10.1007/s10098-012-0507-0

    Article  CAS  Google Scholar 

  • Huang L, Zhu Y, Huo C, Zheng H, Feng G, Zhang C, Li Y (2008) Mechanistic insight into the heterogeneous catalytic transfer hydrogenation over Cu/Al2O3: direct evidence for the assistant role of support. J Mol Catal A 288:109–115. doi:10.1016/j.molcata.2008.03.026

    Article  CAS  Google Scholar 

  • Hughes JP (1953) Hydrogenation of fatty oils. J Am Oil Chem Soc 30:506–515. doi:10.1007/BF02641690

    Article  Google Scholar 

  • Hunter GLK, Brogden WB Jr (1963) Isomerization and disproportionation of d-limonene on silica gel. J Org Chem 28:1679–1682. doi:10.1021/jo01041a063

    Article  CAS  Google Scholar 

  • Imai H, Nishiguchi T, Fukuzumi K (1976) Transfer hydrogenation and transfer hydrogenolysis. IX. Hydrogen transfer from organic compounds to aldehydes and ketones catalyzed by dihydridotetrakis(triphenylphosphine)ruthenium(II). J Org Chem 41:665–671. doi:10.1021/jo00866a016

    Article  CAS  Google Scholar 

  • Kaercher JA, Schneider RCS, Klamt RA, Silva WLT, Schmatz WL, Szarblewski MS, Machado EL (2012) Optimization of biodiesel production for self-consumption: considering its environmental impacts. J Clean Prod. doi:10.1016/j.jclepro.2012.09.016

  • Kist LT, Moutaqi S, Machado EL (2009) Cleaner production in the management of water use at a poultry slaughterhouse of Vale do Taquari, Brazil: a case study. J Clean Prod 17:1200–1205. doi:10.1016/j.jclepro.2009.04.006

    Article  CAS  Google Scholar 

  • Leopold LB, Clarke FE, Hanshaw BB, Balsey JR (1971) A procedure for evaluating environmental impact. Geological Survey Circular, Washington, DC

    Google Scholar 

  • Martinelli M, Schneider RCS, Baldissarelli VZ, Holleben MLE, Caramão EB (2005) Castor oil hydrogenation by a catalytic hydrogen transfer system using limonene as hydrogen donor. J Am Oil Chem Soc 82:279–283. doi:10.1007/s11746-005-1067-4

    Article  CAS  Google Scholar 

  • Mondal K, Lalvani SB (2003) Mediator-assisted electrochemical hydrogenation of soybean oil. Chem Eng Sci 58:2643–2656. doi:10.1016/S0009-2509(03)00104-0

    Article  CAS  Google Scholar 

  • Neelakandeswari N, Sangami G, Emayavaramban P, Ganesh Babu S, Karvembu R, Dharmaraj N (2012) Preparation and characterization of nickel aluminosilicate nanocomposites for transfer hydrogenation of carbonyl compounds. J Mol Catal A 356:90–99. doi:10.1016/j.molcata.2011.12.029

    Article  CAS  Google Scholar 

  • Nishiguchi T, Tagawa T, Imai H, Fukuzumi K (1997) Transfer hydrogenation and transfer hydrogenolysis. X. Selective hydrogenation of methyl linoleate by indoline and isopropyl alcohol. J Am Oil Chem Soc 54:144–149. doi:10.1007/BF02670782

    Article  Google Scholar 

  • Pastakia CMR, Jensen A (1998) The rapid impact assessment matrix (riam) for EIA. Environ Impact Asses Rev 18:461–482

    Article  Google Scholar 

  • Perego C, Peratello S (1999) Experimental methods in catalytic kinetics. Catal Today 52:133–145. doi:10.1016/S0920-5861(99)00071-1

    Article  CAS  Google Scholar 

  • Ratnayake WMN, Pelletier G (1992) Positional and geometrical isomers of linoleic acid in partially hydrogenated oils. J Am Oil Chem Soc 69:95–105. doi:10.1007/BF02540557

    Article  CAS  Google Scholar 

  • Schneider RCS, Baldissarelli VZ, Martinelli M, von Holleben MLA, Caramão EB (2003) Determination of the disproportionation products of limonene used for the catalytic hydrogenation of castor oil. J Chromatogr A 985:313–319. doi:10.1016/S0021-9673(02)01464-4

    Article  CAS  Google Scholar 

  • Schneider RCS, Baldissarelli VZ, Trombetta F, Martinelli M, Caramão EB (2004) Optimization of gas chromatographic–mass spectrometric analysis for fatty acids in hydrogenated castor oil obtained by catalytic transfer hydrogenation. Anal Chim Acta 505:223–226. doi:10.1016/j.aca.2003.10.070

    Article  Google Scholar 

  • Selim MM, El-Maksoud IHA (2005) Spectroscopic and catalytic characterization of Ni nano-size catalyst for edible oil hydrogenation. Microporous Mesoporous Mater 85:273–278. doi:10.1016/j.micromeso.2005.06.027

    Article  CAS  Google Scholar 

  • Sousa RN, Veiga MM, Meech J, Jokinen J, Sousa AJ (2011) A simplified matrix of environmental impacts to support an intervention program in a small-scale mining site. J Clean Prod 19:580–587. doi:10.1016/j.jclepro.2010.11.017

    Article  Google Scholar 

  • Sreenivasan B, Kamath NR, Kane JG (1957) Studies on castor oil. II. Hydrogenation of castor oil. J Am Oil Chem Soc 34:302–307. doi:10.1007/BF02638830

    Article  CAS  Google Scholar 

  • Tagawa T, Nishiguchi T, Fukuzumi K (1978) Transfer hydrogenation and transfer hydrogenolysis: XII. Selective hydrogenation of fatty acid methyl esters by various hydrogen donors. J Am Oil Chem Soc 55:332–336. doi:10.1007/BF02669923

    Article  CAS  Google Scholar 

  • Vishwanadham B, Khan AA, Rao MB (1995) Reaction rates of simultaneous dehydration and hydrogenation of castor oil. J Am Oil Chem Soc 72:1033–1036. doi:10.1007/BF02660717

    Article  CAS  Google Scholar 

  • Von Holleben MLA, Zucolotto M, Zini CA, Oliveira ER (1994) A selective reduction of α,β-unsaturated ketones. Tetrahedron 50:973–978. doi:10.1016/S0040-4020(01)80811-5

    Article  Google Scholar 

  • Wang JA, Bokhimi X, Novaro O, Lópeze T, Tzompantizi F, Gómez R, Navarrete J, Llanos ME, López-Salinas E (1999) Effects of structural defects and acid–basic properties on the activity and selectivity of isopropanol decomposition on nanocrystallite sol–gel alumina catalyst. J Mol Catal A 137:239–252. doi:10.1016/S1381

    Article  CAS  Google Scholar 

  • Xiang Y, Li X, Lu C, Ma L, Zhang Q (2010) Water-improved heterogeneous transfer hydrogenation using methanol as hydrogen donor over Pd-based catalyst. Appl Catal A 375:289–294. doi:10.1016/j.apcata.2010.01.004

    Article  CAS  Google Scholar 

  • Zajcew M (1958) The hydrogenation of fatty oils with palladium catalyst. I. Hydrogenation of castor oil. J Am Oil Chem Soc 35:475–477. doi:10.1007/BF02539920

    Article  CAS  Google Scholar 

  • Zanfir M, Sun X, Gavriilidis A (2007) Investigation of a rotating disc reactor for acetone stripping and asymmetric transfer hydrogenation: modelling and experiments. Chem Eng Sci 62:741–755. doi:10.1016/j.ces.2006.09.034

    Article  CAS  Google Scholar 

  • Zini CA (1990) Utilização do limoneno como doador de hidrogênios na redução catalítica por transferência de algumas cetonas alicíclicas α,β-insaturadas. Dissertation, University of Rio Grande do Sul

  • Zini CA, Von Holleben MLA (1992) Hidrogenação Catalítica Heterogênea por Transferência e sua Relação com outros Métodos de Redução de Cetonas α,β-insaturadas. Quím. Nova 15:40-54. ISSN: 0100-4042. http://quimicanova.sbq.org.br/qn/qnol/1992/vol15n1/index.html

  • Zucolotto M (1994) Esterioquímica e mecanismo de hidrogenação catalítica heterogênea por transferência de hidrogênios de moléculas de hidroaromáticas. Dissertation, University of Rio Grande do Sul

Download references

Acknowledgments

We gratefully acknowledge financial support provided by SCT-RS, FINEP and FAPERGS. We also would like to thank CNPq for providing scholarships to L.R.S.L and M.M.C., and the FAP/UNISC program for research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosana de Cassia de Souza Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Cassia de Souza Schneider, R., Lara, L.R.S., Ceolin, M.M. et al. Environmental impact of castor oil catalytic transfer hydrogenation. Clean Techn Environ Policy 15, 977–985 (2013). https://doi.org/10.1007/s10098-012-0567-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-012-0567-1

Keywords

Navigation