Skip to main content
Log in

Turning Laminaria digitata seaweed into a resource for sustainable and ecological removal of trivalent chromium ions from aqueous solutions

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

This study presents the application of a safe, cost effective, environmental friendly, and efficient technology for the removal of trivalent chromium ions from aqueous solutions, based on the valorisation of a renewable resource, Laminaria digitata seaweed. Insights into trivalent chromium speciation in solution and interaction with the active sites present in the surface of the brown algae were studied. Carboxyl and hydroxyl groups were identified as the major binding sites present in the surface of the biosorbent, in concentrations (Q max) of 2.06 ± 0.01 and 1.4 ± 0.7 mmol g−1, and with proton binding parameters (pK) of 3.28 ± 0.01 and 11 ± 1, respectively. Trivalent chromium uptake at equilibrium conditions was well described at different acidic pH conditions and chromium concentrations, using a model which incorporates trivalent chromium hydrolysis reactions in the aqueous phase and its chemical interactions with the available active sites (carboxyl groups) present in the surface of biosorbent. The distribution profile of trivalent chromium species present in the solution as well as at the binding sites indicated that Cr3+ and CrOH2+ exhibit different affinities for the carboxyl groups present in the surface of the biomass according to the pH. A mass transfer kinetics model was applied to describe the kinetics at batch system, being possible to obtain the distribution of CrOH2+ and Cr3+ species in solution and at the binding sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a p :

Specific area of the particle (cm−1)

B :

Representative of the functional group in the biomass

B T or Q max :

Total number of binding sites B per unit mass of biomass (mmol g−1)

C i :

Concentration of species i in the fluid phase (mmol L−1)

C H :

Proton concentration in the solution (mmol L−1)

D h,i :

Coefficient of homogeneous diffusion inside the particle for each species i (cm2 s−1)

F obj-a :

Objective function

i :

Experimental sample number

k :

Reaction rate constant (s−1)

k p,i :

Overall mass transfer coefficient of species i (cm s−1)

\( K^{\prime}_{\text{H}} \) :

Average of the affinity distribution of hydrogen ions

K int i,H :

The intrinsic proton affinity constant at each binding site i

K H :

Dissociation constant of functional group (mol L−1)

K M1 :

Binding constant of Cr3+ to functional group (L mol−1)

K M2 :

Binding constant of CrOH2+ to functional group (L mol−1)

K s :

Thermodynamic equilibrium constant (mol L−1)

m H :

Width of the Sips distribution

n :

Number of samples

q :

Concentration of species i in the solid phase (mmol g−1)

q i 〉:

Average concentration of species i in the solid phase (mmol g−1)

\( q_{i}^{ * } \) :

Equilibrium concentration of species i in the solid phase (mmol g−1)

Q H :

Weighted sum of the charge contributions of each active site (mmol g−1)

Q expH,i :

Experimental charge of an acidic surface (mmol g−1)

Q estH,i :

Estimated charge of an acidic surface (mmol g−1)

R :

Half of the thin plate thickness (cm)

V :

Volume of the liquid in the reactor (L)

W :

Algal mass (g)

t :

Time (s)

z :

Distance to the symmetry plane (cm)

τd,i :

Time constant for diffusion of ionic species into the particle (s)

r i :

Kinetic rate (mmol L−1 s−1)

θ T,H :

Total degree of protonation

References

  • Batista APS, Romão LPC, Arguelho MLPM, Garcia CAB, Alves JPH, Passos EA, Rosa AH (2009) Biosorption of Cr(III) using in natura and chemically treated tropical peats. J Hazard Mater 163(2–3):517–523. doi:10.1016/j.jhazmat.2008.06.129

    Article  CAS  Google Scholar 

  • Bishnoi NR, Kumar R, Kumar S, Rani S (2007) Biosorption of Cr(III) from aqueous solution using algal biomass spirogyra spp. J Hazard Mater 145(1–2):142–147. doi:10.1016/j.jhazmat.2006.10.093

    Article  CAS  Google Scholar 

  • Chapra SC, Canale RP (1998) Numerical methods for engineers, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Chojnacka K, Chojnacki A, Górecka H (2005) Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59 (1):75–84. doi:10.1016/j.chemosphere.2004.10.005

    Google Scholar 

  • Crist RH, Oberholser K, Schwartz D, Marzoff J, Ryder D, Crist DR (1988) Interactions of metals and protons with algae. Environ Sci Technol 22(7):755–760. doi:10.1021/es00172a002

    Article  CAS  Google Scholar 

  • Davis TA, Volesky B, Vieira RHSF (2000) Sargassum seaweed as biosorbent for heavy metals. Water Res 34(17):4270–4278. doi:10.1016/s0043-1354(00)00177-9

    Article  CAS  Google Scholar 

  • Dean JA (ed) (1979) Lange’s handbook of chemistry, 12th edn. McGraw-Hill Book Company, New York

    Google Scholar 

  • Di Natale F, Lancia A, Molino A, Musmarra D (2007) Removal of chromium ions form aqueous solutions by adsorption on activated carbon and char. J Hazard Mater 145(3):381–390. doi:10.1016/j.jhazmat.2006.11.028

    Article  Google Scholar 

  • Dittert IM, Vilar VJP, da Silva EAB, de Souza SMAGU, de Souza AAU, Botelho CMS, Boaventura RAR (2012) Adding value to marine macro-algae Laminaria digitata through its use in the separation and recovery of trivalent chromium ions from aqueous solution. Chem Eng J 193–194:348–357. doi:10.1016/j.cej.2012.04.048

    Article  Google Scholar 

  • Fourest E, Volesky B (1995) Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of sargassum fluitans. Environ Sci Technol 30(1):277–282. doi:10.1021/es950315s

    Article  Google Scholar 

  • Glueckauf E, Coates JI (1947) 241. Theory of chromatography. Part IV. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation. J Chem Soc (Resumed)

  • Hashim MA, Chu KH (2004) Biosorption of cadmium by brown, green, and red seaweeds. Chem Eng J 97(2–3):249–255. doi:10.1016/s1385-8947(03)00216-x

    Article  CAS  Google Scholar 

  • Kocaoba S, Akcin G (2002) Removal and recovery of chromium and chromium speciation with MINTEQA2. Talanta 57(1):23–30. doi:10.1016/s0039-9140(01)00677-4

    Article  CAS  Google Scholar 

  • Koopal LK, Saito T, Pinheiro JP, Riemsdijk WHv (2005) Ion binding to natural organic matter: general considerations and the NICA–Donnan model. Colloids Surf A 265(1–3):40–54. doi:10.1016/j.colsurfa.2004.11.050

    Article  CAS  Google Scholar 

  • Kratochvil D, Pimentel P, Volesky B (1998) Removal of trivalent and hexavalent chromium by seaweed biosorbent. Environ Sci Technol 32(18):2693–2698. doi:10.1021/es971073u

    Article  CAS  Google Scholar 

  • Marcus Y, Kertes AS (1969) Ion exchange and solvent extraction of metal complexes. Wiley Interscience, London

  • Milne CJ, Kinniburgh DG, de Wit JCM, van Riemsdijk WH, Koopal LK (1995) Analysis of proton binding by a peat humic acid using a simple electrostatic model. Geochim Cosmochim Acta 59(6):1101–1112. doi:10.1016/0016-7037(95)00027-w

    Article  CAS  Google Scholar 

  • Murphy V, Hughes H, McLoughlin P (2007) Cu(II) binding by dried biomass of red, green and brown macroalgae. Water Res 41(4):731–740. doi:10.1016/j.watres.2006.11.032

    Article  CAS  Google Scholar 

  • Naja G, Murphy V, Volesky B (2010) Biosorption, metals. Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology 1–29

  • Ofer R, Yerachmiel A, Shmuel Y (2003) Marine macroalgae as biosorbents for cadmium and nickel in water. Water Environ Res 75:246–253

    Article  CAS  Google Scholar 

  • Oliveira RC, Palmieri MC, Garcia Jr O (2011) Biosorption of metals: state of the art, general features, and potential applications for environmental and technological processes. Progress in biomass and bioenergy production. InTech, Araraquara

  • Petzold L (1983) Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential-equations. Siam J Sci Stat Comput 4(1):136–148

    Article  Google Scholar 

  • Rai D, Sass BM, Moore DA (1987) Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg Chem 26(3):345–349. doi:10.1021/ic00250a002

    Article  CAS  Google Scholar 

  • Reid RC, Prausnitz JM, Poling BE (1987) The properties of gases & liquids, 4th edn. McGraw-Hill Book Company, New York

  • Saravane R, Sundararajan T, Reddy SS (2001) Chemically modified low cost treatment for heavy metal effluent management. Environ Manag Health 12:215–224

    Article  Google Scholar 

  • Sari A, Uluozlü ÖD, Tüzen M (2011) Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass. Chem Eng J 167(1):155–161. doi:10.1016/j.cej.2010.12.014

    Article  CAS  Google Scholar 

  • Schiewer S, Wong MH (1999) Metal binding stoichiometry and isotherm choice in biosorption. Environ Sci Technol 33(21):3821–3828. doi:10.1021/es981288j

    Article  CAS  Google Scholar 

  • Shanker AK, Venkateswarlu B (2011) Chromium: environmental pollution, health effects and mode of action. In: Editor-in-Chief: Jerome ON (ed) Encyclopedia of environmental health. Elsevier, Burlington, pp 650–659

  • Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16:490–495

    Article  CAS  Google Scholar 

  • Vaiopoulou E, Gikas P (2012) Effects of chromium on activated sludge and on the performance of wastewater treatment plants: a review. Water Res 46(3):549–570. doi:10.1016/j.watres.2011.11.024

    Article  CAS  Google Scholar 

  • Vilar VJP, Botelho CMS, Boaventura RAR (2007) Chromium and zinc uptake by algae Gelidium and agar extraction algal waste: kinetics and equilibrium. J Hazard Mater 149(3):643–649. doi:10.1016/j.jhazmat.2007.04.023

    Article  CAS  Google Scholar 

  • Vilar VJP, Valle JAB, Bhatnagar A, Santos JC, Guelli U, de Souza SMA, de Souza AAU, Botelho CMS, Boaventura RAR (2012) Insights into trivalent chromium biosorption onto protonated brown algae Pelvetia canaliculata: distribution of chromium ionic species on the binding sites. Chem Eng J 200–202:140–148. doi:10.1016/j.cej.2012.06.023

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27(2):195–226. doi:10.1016/jbiotechadv.2008.11.002

    Article  Google Scholar 

  • Williams CJ, Edyvean RGJ (1997) Optimization of metal adsorption by seaweeds and seaweed derivatives. Process Saf Environ Prot 75(1):19–26. doi:10.1205/095758297528733

    Article  CAS  Google Scholar 

  • Yang J, Volesky B (1999) Modeling uranium-proton ion exchange in biosorption. Environ Sci Technol 33(22):4079–4085. doi:10.1021/es990435q

    Article  CAS  Google Scholar 

  • Yun Y-S, Park D, Park JM, Volesky B (2001) Biosorption of trivalent chromium on the brown seaweed biomass. Environ Sci Technol 35(21):4353–4358. doi:10.1021/es010866k

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the project of International Cooperation, Edital-CGCI-010/2009, Projeto CAPES/FCT no. 279/2010, financed by CAPES-Brazil and FCT-Portugal. This work was also partially supported by project PEst-C/EQB/LA0020/2011, financed by FEDER through COMPETE—Programa Operacional Factores de Competitividade and by FCT—Fundação para a Ciência e a Tecnologia. Ingrid M. Dittert also acknowledges her Doctoral fellowship provided by CAPES. V.J.P. Vilar acknowledges financial support from Programme Ciência 2008 (FCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vítor J. P. Vilar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dittert, I.M., Vilar, V.J.P., da Silva, E.A.B. et al. Turning Laminaria digitata seaweed into a resource for sustainable and ecological removal of trivalent chromium ions from aqueous solutions. Clean Techn Environ Policy 15, 955–965 (2013). https://doi.org/10.1007/s10098-012-0565-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-012-0565-3

Keywords

Navigation