Expanding GREENSCOPE beyond the gate: a green chemistry and life cycle perspective

Abstract

Industrial processes, particularly those within the chemical industry, contribute products and services to improve and increase society’s quality of life. However, the transformation of raw materials into their respective final goods involves the consumption of mass and energy and the possible generation of by-products and releases. To address these issues, the new approach for chemical processing is focused on sustainable production: minimize raw material consumption and energy loads, minimize/eliminate releases, and increase the economic feasibility of the process. To evaluate these advances, a sustainability assessment methodology, GREENSCOPE, has been developed into a tool to evaluate and assist in the synthesis and design of chemical processes. New process sustainability indicators have been proposed based on input/output process data, and the base-case ratio approach is implemented to predict process changes from known process performance data and design relationships. In addition, a discussion regarding the implications of using sustainability evaluations beyond the process boundaries, applying the principles of green chemistry in all steps of chemical process development, and a description of their benefits to the life cycle inventory and the subsequent life cycle assessment is included. Finally, a new methodology approach to integrate GREENSCOPE into a life cycle inventory to develop sustainable systems is introduced.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. American Chemistry Council (2010) Chemistry industry facts. http://www.americanchemistry.com/s_acc/bin.asp?CID=1772&DID=6573&DOC=FILE.PDF. Accessed April 2011

  2. Anastas PT, Lankey RL (2000) Life cycle assessment and green chemistry: the yin and yang of industrial ecology. Green Chem 2(6):289–295

    CAS  Article  Google Scholar 

  3. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  4. Anastas PT, Zimmerman JB (2003) Design through the 12 principles of green engineering. Environ Sci Technol 37(5):94A–101A. doi:10.1021/es032373g

    Article  Google Scholar 

  5. Argonne National Laboratory (2012) The GREET model. http://greet.es.anl.gov/. Accessed August 2012

  6. AspenTech (2012) Aspen economic evaluation. http://www.aspentech.com/core/aspen-economic-eval.aspx. Accessed August 2012

  7. Bakshi BR, Fiksel J (2003) The quest for sustainability: challenges for process systems engineering. AIChE J 49(6):1350–1358

    CAS  Article  Google Scholar 

  8. Brunet R, Guillén-Gosálbez G, Jiménez L (2011) Cleaner design of single-product biotechnological facilities through the integration of process simulation, multiobjective optimization, life cycle assessment, and principal component analysis. Ind Eng Chem Res 51(1):410–424. doi:10.1021/ie2011577

    Article  Google Scholar 

  9. Buchholz T, Luzadis VA, Volk TA (2009) Sustainability criteria for bioenergy systems: results from an expert survey. J Clean Prod 17(Supplement 10):S86–S98. doi:10.1016/j.jclepro.2009.04.015

    Google Scholar 

  10. Cano-Ruiz JA, McRae GJ (1998) Environmentally conscious chemical process design. Annu Rev Energy Env 23(1):499–536. doi:10.1146/annurev.energy.23.1.499

    Article  Google Scholar 

  11. Cavalett O, Ortega E (2010) Integrated environmental assessment of biodiesel production from soybean in Brazil. J Clean Prod 18(1):55–70. doi:10.1016/j.jclepro.2009.09.008

    CAS  Article  Google Scholar 

  12. Center for Resilience Ohio State University (2010) Ecologically-based life cycle assessment. http://resilience.eng.ohio-state.edu/eco-lca/index.htm. Accessed October 2010

  13. Chen H, Badenschier SM, Shonnard DR (2002) Uncertainty analysis for toxicity assessment of chemical process designs. Ind Eng Chem Res 41(18):4440–4450. doi:10.1021/ie010550l

    CAS  Article  Google Scholar 

  14. Ciuffo B, Miola A, Punzo V, Sala S (2012) Dealing with uncertainty in sustainability assessment. European Commission, Joint Research Centre, Institute for Environment and Sustainability

  15. Cornell University Library Guides (2012) Chemical prices. http://guides.library.cornell.edu/content.php?pid=2816&sid=14269. Accessed August 2012

  16. Dorini G, Kapelan Z, Azapagic A (2011) Managing uncertainty in multiple-criteria decision making related to sustainability assessment. Clean Technol Environ Policy 13(1):133–139. doi:10.1007/s10098-010-0291-7

    Article  Google Scholar 

  17. European Commission (2010) European chemical substances information system (ESIS). http://esis.jrc.ec.europa.eu/. Accessed February 2011

  18. Gonzalez MA, Smith RL (2003) A methodology to evaluate process sustainability. Environ Prog 22(4):269–276

    CAS  Article  Google Scholar 

  19. Guillén-Gosálbez G, Grossmann I (2010) A global optimization strategy for the environmentally conscious design of chemical supply chains under uncertainty in the damage assessment model. Comput Chem Eng 34(1):42–58. doi:10.1016/j.compchemeng.2009.09.003

    Article  Google Scholar 

  20. Halog A, Manik Y (2011) Advancing integrated systems modelling framework for life cycle sustainability assessment. Sustainability 3(2):469–499

    Article  Google Scholar 

  21. International Agency for Research on Cancer (2010) IARC monographs on the evaluation of carcinogenic risks to humans. http://monographs.iarc.fr/ENG/Classification/index.php. Accessed April 2011

  22. International Society for the Advancement of Emergy Research (2012) The emergy database. http://emergydatabase.org/. Accessed August 2012

  23. Jimenez-Gonzalez C, Ponder CS, Broxterman QB, Manley JB (2011) Using the right green yardstick—why process mass intensity is used in the pharmaceutical industry to drive more sustainable processes. Org Process Res Dev. doi:10.1021/op200097d

    Google Scholar 

  24. Jiménez-González C, Kim S, Overcash M (2000) Methodology for developing gate-to-gate Life cycle inventory information. Int J Life Cycle Assess 5(3):153–159

    Article  Google Scholar 

  25. Jiménez-González C, Curzons A, Constable D, Cunningham V (2004) Cradle-to-gate life cycle inventory and assessment of pharmaceutical compounds. Int J Life Cycle Assess 9(2):114–121

    Article  Google Scholar 

  26. Ju LP, Chen B (2011) Embodied energy and emergy evaluation of a typical biodiesel production chain in China. Ecol Model 222(14):2385–2392. doi:10.1016/j.ecolmodel.2010.07.021

    CAS  Article  Google Scholar 

  27. Kazantzi V, El-Halwagi A, Kazantzis N, El-Halwagi M (2012) Managing uncertainties in a safety-constrained process system for solvent selection and usage: an optimization approach with technical, economic, and risk factors. Clean Technol Environ Policy:1–12. doi:10.1007/s10098-012-0516-z

  28. Kim K-J, Smith RL (2005) Systematic procedure for designing processes with multiple environmental objectives. Environ Sci Technol 39(7):2394–2405. doi:10.1021/es0490424

    CAS  Article  Google Scholar 

  29. Lange J-P (2002) Sustainable development: efficiency and recycling in chemicals manufacturing. Green Chem 4(6):546–550

    CAS  Article  Google Scholar 

  30. Liu Z, Huang Y (2012) Technology evaluation and decision making for sustainability enhancement of industrial systems under uncertainty. AIChE J 58(6):1841–1852. doi:10.1002/aic.13818

    CAS  Article  Google Scholar 

  31. National Renewable Energy Laboratory (2008) U.S. life-cycle inventory database. http://www.nrel.gov/lci/database/. Accessed March 2011

  32. Odum HT (1996) Environmental accounting: EMERGY and environmental decision making. Wiley, New York

    Google Scholar 

  33. Organization for Economic Cooperation and Development (2011) The global portal to information on chemical substances (eChemPortal). http://www.echemportal.org/echemportal/substancesearch/page.action?pageID=0. Accessed February 2011

  34. PRé Consultants (2012) SimaPro. http://www.pre-sustainability.com/content/simapro-lca-software. Accessed August 2012

  35. Rowley HV, Peters GM, Lundie S, Moore SJ (2012) Aggregating sustainability indicators: Beyond the weighted sum. J Environ Manage 111:24–33. doi:10.1016/j.jenvman.2012.05.004

    Article  Google Scholar 

  36. Rugani B (2010) Advances towards a comprehensive evaluation of emergy in life cycle assessment. University of Siena, Siena

    Google Scholar 

  37. Ruiz-Mercado GJ, Smith RL, Gonzalez MA (2012a) Sustainability indicators for chemical processes: I. Taxonomy. Ind Eng Chem Res 51(5):2309–2328. doi:10.1021/ie102116e

    CAS  Article  Google Scholar 

  38. Ruiz-Mercado GJ, Smith RL, Gonzalez MA (2012b) Sustainability indicators for chemical processes: II. Data needs. Ind Eng Chem Res 51(5):2329–2353. doi:10.1021/ie200755k

    Google Scholar 

  39. Schulz W (2007) The costs of biofuels. Chem Eng News 85(51):12–16

    Article  Google Scholar 

  40. Sikdar S (2009) On aggregating multiple indicators into a single metric for sustainability. Clean Technol Environ Policy 11(2):157–161. doi:10.1007/s10098-009-0225-4

    Article  Google Scholar 

  41. Smith RL, Gonzalez MA (2004) Methods for evaluating the sustainability of green processes. In: Barbosa-Póvoa A, Matos H (eds) Computer aided chemical engineering, vol 18. Elsevier, Amsterdam, pp 1135–1140

    Google Scholar 

  42. Smith RL, Ruiz-Mercado G (2012) A method for decision making using sustainability indicators. Clean Technol Environ Policy (Submitted)

  43. Stefanis SK, Pistikopoulos EN (1997) Methodology for environmental risk assessment of industrial nonroutine releases. Ind Eng Chem Res 36(9):3694–3707. doi:10.1021/ie9607816

    CAS  Article  Google Scholar 

  44. Sugiyama H, Fischer U, Hungerbühler K, Hirao M (2008) Decision framework for chemical process design including different stages of environmental, health, and safety assessment. AIChE J 54(4):1037–1053

    CAS  Article  Google Scholar 

  45. Swiss Centre for Life Cycle Inventories (2010) Ecoinvent data v2.2, http://www.ecoinvent.org/home/. Accessed March 2011

  46. The University of Texas Libraries (2012) Chemical engineering economics. http://lib.utexas.edu/chem/info/chemengecon.html. Accessed August 2012

  47. Turton R, Bailie RC, Whiting WB, Shaeiwitz JA (2009) Analysis, synthesis, and design of chemical processes, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  48. United Nations (2012) UN documents: gathering a body of global agreements. United Nations Commission on Sustainable Development. http://www.un-documents.net/ocf-02.htm. Accessed September 2012

  49. U.S. Bureau of Economic Analysis (2009) GDP and personal income of the U.S. http://www.bea.gov/national/index.htm#gdp. Accessed April 2011

  50. U.S. Energy Information Administration (2008) Bulk chemical industry energy consumption. http://www.eia.doe.gov/oiaf/aeo/tablebrowser/#release=AEO2011&subject=0-AEO2011&table=38-AEO2011&region=0-0&cases=ref2011-d020911a. Accessed April 2011

  51. U.S. Environmental Protection Agency (2010) The integrated risk information system http://www.epa.gov/ncea/iris/index.html. Accessed February 2011

  52. U.S. Environmental Protection Agency (2011) Aggregated computational toxicology resource (ACToR). http://epa.gov/ncct/actor/. Accessed March 2011

  53. U.S. Environmental Protection Agency (2012a) 2010 Toxics release inventory national analysis overview. http://www.epa.gov/tri/tridata/tri10/nationalanalysis/overview/2010TRINAOverview.pdf. Accessed August 2012

  54. U.S. Environmental Protection Agency (2012b) Life cycle perspective. http://www.epa.gov/nrmrl/std/sab/lca/. Accessed May 2012

  55. U.S. National Institute of Standards and Technology (2011) NIST chemistry WebBook. http://webbook.nist.gov/. Accessed March 2011

  56. U.S. National Library of Medicine (2011a) Hazardous substances data bank (HSDB). http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB. Accessed March 2011

  57. U.S. National Library of Medicine (2011b) Toxicology data network (TOXNET). http://toxnet.nlm.nih.gov/index.html. Accessed March 2011

  58. Villalba G, Ayres L, Ayres RU (2006) A proposal for emission calculations for chemical processes, Part I. Resour Conserv Recycl 48(3):280–299. doi:10.1016/j.resconrec.2006.01.006

    Article  Google Scholar 

  59. Wang J–J, Jing Y-Y, Zhang C-F, Zhao J-H (2009) Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew Sustain Energy Rev 13(9):2263–2278. doi:10.1016/j.rser.2009.06.021

    Article  Google Scholar 

  60. Winterton N (2001) Twelve more green chemistry principles. Green Chem 6(1):G73–G75

    Google Scholar 

  61. Yi H-S, Hau JL, Ukidwe NU, Bakshi BR (2004) Hierarchical thermodynamic metrics for evaluating the environmental sustainability of industrial processes. Environ Prog 23(4):302–314

    CAS  Article  Google Scholar 

  62. Zhang Y, Baral A, Bakshi BR (2010a) Accounting for ecosystem services in life cycle assessment, Part II: toward an ecologically based LCA. Environ Sci Technol 44(7):2624–2631. doi:10.1021/es900548a

    CAS  Article  Google Scholar 

  63. Zhang Y, Singh S, Bakshi BR (2010b) Accounting for ecosystem services in life cycle assessment, part I: a critical review. Environ Sci Technol 44(7):2232–2242. doi:10.1021/es9021156

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This project was supported in part by an appointment of Dr. Ruiz-Mercado to the Research Participation Program for the EPA, Office of Research and Development administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy and EPA.

Disclaimer

The views expressed in this article are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gerardo J. Ruiz-Mercado.

Appendix 1

Appendix 1

List of indicators

Environmental indicators
1. N haz. mat. Number of hazardous materials input
2. m haz. mat. Mass of hazardous materials input
3. m haz. mat. spec. Specific hazardous raw materials input
4. m PBT mat. Total mass of persistent, bio-accumulative and toxic chemicals used
5. CEI Chemical exposure index
6. HHirritation Health hazard, irritation factor
7. HHchronic toxicity Health hazard, chronic toxicity factor
8. SHmobility Safety hazard, mobility
9. SHfire/explosion Safety hazard, fire/explosion
10. SHreac/dec I Safety hazard, reaction/decomposition I
11. SHreac/dec II Safety hazard, reaction/decomposition II
12. SHacute tox. Safety hazard, acute toxicity
13. FTA Fault tree assessment
14. TRs Specific toxic release
15. TR Toxic release intensity
16. EQ Environmental quotient
17. EBcancer eff. Human health burden, cancer effects
18. EHdegradation Environmental hazard, persistency of organic substances
19. EHair Environmental hazard, air hazard
20. EHwater Environmental hazard, water hazard
21. EHsolid Environmental hazard, solid waste (inorganic pollutants)
22. EHbioacc. Environmental hazard, bioaccumulation (the food chain or in soil)
23. GWP Global warming potential
24. GWI Global warming intensity
25. ODP Stratospheric ozone-depletion potential
26. ODI Stratospheric ozone-depletion intensity
27. PCOP Photochemical oxidation (smog) potential
28. PCOI Photochemical oxidation (smog) intensity
29. AP Atmospheric acidification potential
30. API Atmospheric acidification intensity
31. WPacid. water Aquatic acidification potential
32. WPIacid. water Aquatic acidification intensity
33. WPbasi. water Aquatic basification potential
34. WPIbasi. water Aquatic basification intensity
35. WPsalinity Aquatic salinization potential
36. WPIsalinity Aquatic salinization intensity
37. WPO2 dem. Aquatic oxygen demand potential
38. WPIO2 dem. Aquatic oxygen demand intensity
39. WPtox. other Ecotoxicity to aquatic life potential
40. WPItox. other Ecotoxicity to aquatic life intensity
41. WPtox. metal Ecotoxicity to aquatic life potential by metals
42. WPItox. metal Ecotoxicity to aquatic life intensity by metals
43. EP Eutrophication potential
44. EPI Eutrophication potential intensity
45. SMIM Specific emergy intensity
46. MIM Emergy intensity
47. ELR Environmental loading ratio
48. EYR Emergy yield ratio
49. ESI Emergy sustainability Index
50. BFM Breeding factor
51. RI Renewability index
52. m s, tot. Total solid waste mass
53. m s, spec. Specific solid waste mass
54. m s, recov. Solid waste mass for recovery
55. m s, disp. Solid waste mass for disposal
56. w s, recycl. Recycling mass fraction
57. w s, non-recycl. Disposal mass fraction
58. w s, haz. Hazardous solid waste mass fraction
59. m s, haz. Total hazardous solid waste disposal
60. m s, haz. spec. Specific hazardous solid waste
61. m s, n-haz. Total non-hazardous solid waste disposal
62. m s, n-haz.spec. Non-hazardous solid waste intensity
63. V l, tot. Total volume of liquid waste
64. V l, spec. Specific liquid waste volume
65. V l, non-poll. Non-polluted liquid waste volume
66. V l, poll. Polluted liquid waste volume
Efficiency indicators
1. ε Reaction yield
2. AE i Atom economy
3. AAE Actual atom economy
4. SF Stoichiometric factor
5. RME Reaction mass efficiency
6. m mat., tot. Total material consumption
7. MIv Value mass intensity
8. MI Mass intensity
9. MP Mass productivity
10. E Environmental factor
11. MLI Mass loss index
12. E mw Environmental factor based on molecular weight
13. EMY Effective mass yield
14. CE Carbon efficiency
15. MRP Material recovery parameter
16. f Solvent and catalyst environmental impact parameter
17. pROIM Physical return on investment
18. RIM Renewability-material index
19. BFM Breeding-material factor
20. w recycl. mat. Recycled material fraction
21. w recycl. prod. Mass fraction of product from recyclable materials
22. w recov. prod. Mass fraction of product designed for disassembly, reuse or recycling
23. V water, tot. Total water consumption
24. FWC Fractional water consumption
25. WI Water intensity
26. Φwater type Volume fraction of water type
Economic indicators
1. NPV Net present value
2. PVR Present value ratio
3. DPBP Discounted payback period
4. DCFROR Discounted cash flow rate of return
5. CCF Capital charge factors
6. EP (Specific) Economic potential
7. ROI Rate of return on investment
8. PBP Payback Period
9. TR Turnover ratio
10. CCP Cumulative cash position
11. CCR Cumulative cash ratio
12. R n Net return
13. REV Revenues from eco-products
14. REVeco-prod. Revenue fraction of eco-products
15. C eq Equivalent annual cost
16. TPC Total product cost
17. E PC Production cost
18. C TM Capital cost
19. COM Manufacturing cost
20. C SRM Specific raw material cost
21. C mat, tot. Total material cost
22. C E, tot. Total energy cost
23. C E, spec. Specific energy costs
24. C E, source Average cost of energy source
25. C water tot. Total water cost
26. C water spec. Water cost fraction
27. C water type Average volume water type cost
28. C s tot. Total solid waste cost
29. C s spec. Solid waste cost fraction
30. C l tot. Total liquid waste cost
31. C l spec. Liquid waste cost fraction
32. C pur. air Costs of purifying air
33. C pur. air fract. Fractional costs of purifying air
Energy indicators
1. E total Total energy consumption
2. R SEI Specific energy intensity
3. R EI Energy intensity
4. WTE Waste treatment energy
5. SRE Solvent recovery energy
6. ηE Resource-energy efficiency
7. RIE Renewability-energy index
8. BFE Breeding-energy factor
9. E recycl. Energy for recycling
10. Extotal Exergy consumption
11. R Ex Exergy intensity
12. ηEx Resource-exergy efficiency
13. RIEx Renewability-exergy index
14. BFEx Breeding-exergy factor

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ruiz-Mercado, G.J., Gonzalez, M.A. & Smith, R.L. Expanding GREENSCOPE beyond the gate: a green chemistry and life cycle perspective. Clean Techn Environ Policy 16, 703–717 (2014). https://doi.org/10.1007/s10098-012-0533-y

Download citation

Keywords

  • GREENSCOPE
  • Sustainability assessment
  • Green chemistry
  • Life cycle assessment
  • Process design