Skip to main content

Advertisement

Log in

Performances analysis of a compact kW-scale ATR reactor for distributed H2 production

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

The distributed production of hydrogen takes on a growing consensus among the different methods for feeding fuel cells. The auto-thermal reforming of hydrocarbons is a candidate as the best method for producing hydrogen on a small scale. Since auto-thermal reforming reactor is fed with hydrocarbon, water and air, their mixing may play a fundamental role on the final process performances, by influencing hydrocarbon conversion, reaction selectivity, and hydrogen production. To obtain a very compact reaction system, reactants pre-heating and products cooling were realized in a special heat exchange system, fully integrated in the reactor. To study the reaction trend along the catalytic bed, a multipoint analysis system was set-up, allowing to monitor both temperature and composition in several points of catalytic bed, and then in several space velocity conditions. The preliminary tests showed very short start-up time, and fast response to the feed variations, confirming that the proposed reaction system is an interesting solution for distributed and non-continuous hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aasberg-Petersen K, Dybkjaer I, Oversen N, Schjodt J, Sehested J, Thomsen S (2011) Natural gas to synthesis gas—catalysts and catalytic processes. J Nat Gas Sci Eng 3:423–459

    Article  CAS  Google Scholar 

  • Ayabe S, Omoto H, Utaka T, Kikuchi R, Sasaki K, Teraoka Y, Eguchi K (2003) Catalytic autothermal reforming of methane and propane over supported metal catalysts. Appl Catal A 241:261–269

    Article  CAS  Google Scholar 

  • Cai X, Cai Y, Lin W (2008) Autothermal reforming of methane over Ni catalysts supported over ZrO2–CeO2–Al2O3. J Nat Gas Chem 17:201–207

    Article  CAS  Google Scholar 

  • Chen Z, Yan Y, Elnashaie SS (2003) Novel circulating fast fluidized-bed membrane reformer for efficient production of hydrogen from steam reforming of methane. Chem Eng Sci 58:4335–4349

    Article  CAS  Google Scholar 

  • Chen W-H, Lin M-R, Lu J-J, Chao Y, Leu T-S (2010) Thermodynamic analysis of hydrogen production from methane via autothermal reforming and partial oxidation followed by water gas shift reaction. Int J Hydrogen Energy 35:11787–11797

    Article  CAS  Google Scholar 

  • Ciambelli P, Palma V, Palo E, Iaquaniello G (2009) Catalysis for sustainable energy production. Wiley-Verlag GmbH & Cop, Weinheim, p 287

    Book  Google Scholar 

  • Ciambelli P, Palma V, Palo E (2010) Comparison of ceramic honeycomb monolith and foam as Ni catalyst carrier for methane autothermal reforming. Catal Today 155:92–100

    Article  CAS  Google Scholar 

  • Cimino S, Lisi L, Russo G, Torbati R (2010) Effect of partial substitution of Rh catalysts with Pt or Pd during the partial oxidation of methane in the presence of sulphur. Catal Today 154:283–292

    Article  CAS  Google Scholar 

  • Halabi M, de Croon M, van der Schaaf J, Cobden P, Schouten J (2011) Reactor modeling of sorption-enhanced autothermal reforming of methane. Part II: effect of operational parameters. Chem Eng J 168:883–888

    Article  CAS  Google Scholar 

  • Haynes DJ, Shekhawat D (2011) Oxidative steam reforming. In: Shekhawat D, Spivey JJ, Berry DA (eds) Fuel cells: technologies for fuel processing. Elsevier, Amsterdam, pp 129–190

    Chapter  Google Scholar 

  • Hwang KR, Park JS, Ihm SK (2011) Si-modified Pt/CeO2 catalyst for a single stage water-gas shift reaction. Int J Hydrogen Energy 36:9685–9693

    Article  CAS  Google Scholar 

  • Kim SH, Chung JH, Kim YT, Han J, Yoon SP, Nam SW, Lim TH, Lee HI (2010) SiO2/Ni and CeO2/Ni catalysts for single-stage water gas shift reaction. Int J Hydrogen Energy 35:3136–3140

    Article  CAS  Google Scholar 

  • Laguna O, Ngassa E, Oraà S, Alvares A, Dominguez M, Romero-Sarria F, Arzamendi G, Gandia L, Centeno M, Odrizola J (2011) Preferential oxidation of CO (CO-PROX) over CuO x /CeO2 coated microchannel reactor. Catal Today. doi:10.1016/j.cattod.2011.03.024

  • Li D, Nakagawa Y, Tomishige K (2011) Methane reforming to synthesis gas over catalysts modified with noble metals. Appl Catal A 804:1–24

    Google Scholar 

  • Lisboa JS, Terra LE, Silva PR, Saitovitch H, Passos FB (2011) Investigation of Ni/Ce-ZrO2 catalysts in the autothermal reforming of methane. Fuel Process Technol 92:2075–2082

    Article  CAS  Google Scholar 

  • Palma V, Palo E, Ciambelli P (2009) Structured catalytic substrates with radial configurations for the intensification of the WGS stage in H2 production. Catal Today 147:s107–s112

    Article  CAS  Google Scholar 

  • Palma V, Palo E, Ricca A, Ciambelli P (2011) Compact multi-fuel autothermal reforming catalytic reactor for H2 production. Chem Eng Trans 25:641–646

    Google Scholar 

  • Qi A, Peppley B, Karan K (2007) Integrated fuel processors for fuel cell application: a review. Fuel Process Technol 88:3–22

    Article  CAS  Google Scholar 

  • Sekhavatjou A, Hosseini Alhashemi A, Karbassi A, Daemolzekr E (2011) Minimization of air pollutants emissions by process improvement of catalytic reforming unit in an Iranian old refinery. Clean Technol Environ Policy: 1–7. doi:10.1007/s10098-011-0347-3

  • Sirichaiprasert K, Pongstabodee S, Luengnaruemitchai A (2008) Single- and double-stage catalytic preferential CO oxidation in H2-rich stream over an alpha-Fe2O3-promoted CuO–CeO2 catalyst. J Chin Inst Chem Eng 39:597–607

    Article  CAS  Google Scholar 

  • Souza MMVM, Schmal M (2005) Autothermal reforming of methane over Pt/ZrO2/Al2O3 catalysts. Appl Catal A 281:19–24

    Article  CAS  Google Scholar 

  • Yuan Z, Ni C, Zhang C, Gao D, Wang S, Xie Y, Okada A (2009) Rh/MgO/Ce0.5Zr0.5O2 supported catalyst for autothermal reforming of methane: the effects of ceria-zirconia doping. Catal Today 146:124–131

    Article  CAS  Google Scholar 

  • Zahedi Nezhad M, Rowshanzamir S, Eikani M (2009) Autothermal refomring of methane to synthesis gas: modelling and simulation. Int J Hydrogen Energy 34:1292–1300

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Ricca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palma, V., Ricca, A. & Ciambelli, P. Performances analysis of a compact kW-scale ATR reactor for distributed H2 production. Clean Techn Environ Policy 15, 63–71 (2013). https://doi.org/10.1007/s10098-012-0477-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-012-0477-2

Keywords

Navigation