Skip to main content

Advertisement

Log in

Bioprospecting of organisms from the deep sea: scientific and environmental aspects

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Accelerating technological development has made it possible for humans to reach to one of the most remote parts of the Earth, the deepest areas of the sea, also called the Earth’s last frontier. Rare, previously hidden ecosystems with vast biological diversity can be found here. These communities and their inhabitants are starting to feel the pressure of human impact, being regarded as having an enormous potential in the development of new products such as pharmaceuticals, molecular probes, enzymes, cosmetics, nutritional supplements, and agrichemicals. However, compared to the bioprospecting activity of these areas, an increasing pressure on deep-sea fisheries is probably an even more serious threat for the deep-sea communities, and a recent publication reports that deep-sea fishes qualify as endangered. Sustainable use of the deep sea and the organisms that inhabit it should thus be aimed for.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson OF, Clark MR (2003) Analysis of the bycatch in the fishery for orange roughy, Hoplostethus atlanticus, on the South Tasmanian Rise. Mar Freshw Res 54:643–652

    Article  Google Scholar 

  • Atomi H (2005) Recent progress towards the application of hyperthermophiles and their enzymes. Curr Opin Chem Biol 9:166–173

    Article  Google Scholar 

  • Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078

    Google Scholar 

  • van den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218

    Article  Google Scholar 

  • Butler PJ, Koslow JA, Snelgrove PVR, Juniper SK (2001) Review of the benthic biodiversity of the deep sea. CSIRO Marine Research, Australia

    Google Scholar 

  • Cailliet GM, Andrews AH, Burton EJ, Watters DL, Kline DE, Ferry-Graham LA (2001) Age determination and validation studies of marine fishes: do deep-dwellers live longer? Exp Gerontol 36:739–764

    Article  Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13(3):253–261

    Article  Google Scholar 

  • Chien A, Edgar DB, Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127(3):1550–1557

    Google Scholar 

  • Daniel RM, Cowan DA (2000) Biomolecular stability and life at high temperatures. Cell Mol Life Sci 57(2):250–264

    Article  Google Scholar 

  • DeLong EF (1997) Marine microbial diversity: the tip of the iceberg. Trends Biotechnol 15:203–207

    Article  Google Scholar 

  • Demirjian DC, Moris-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151

    Article  Google Scholar 

  • Devine JA, Baker KD, Haedrich RL (2006) Fisheries: deep sea fishes qualify as endangered. Nature 439(7072):29

    Article  Google Scholar 

  • Edwards KJ, Bach W, McCollom TM (2005) Geomicrobiology in oceanography: microbe–mineral interactions at and below the seafloor. Trends Microbiol 13(9):449–456

    Article  Google Scholar 

  • Egorova K, Antranikian G (2005) Industrial relevance of thermophilic Archaea. Curr Opin Microbiol 8:649–655

    Article  Google Scholar 

  • Eichler J (2001) Biotechnological uses of archaeal extremozymes. Biotechnol Adv 19:261–278

    Article  Google Scholar 

  • Ewart KV, Lin Q, Hew CL (1999) Structure, function and evolution of anifreeze proteins. Cell Mol Life Sci 55:271–283

    Article  Google Scholar 

  • Fields PA (2001) Protein function at thermal extremes: balancing stability and flexibility. Comp Biochem Physiol 129(2–3):417–431

    Google Scholar 

  • Fujiwara S (2002) Extremophiles: developments of their special function and potential resources. J Biosci Bioeng 94(6):518–525

    Google Scholar 

  • Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx JC, Sonan G, Feller G, Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28(1):25–42

    Article  Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42(4):223–235

    Google Scholar 

  • Guezennec J (2002) Deep-sea hydrothermal vents: a new source of innovative bacterial exopolysaccharides of biotechnological interest? J Ind Microbiol Biotechnol 29(4):204–208

    Article  Google Scholar 

  • Gullo VP, McAlpine J, Lam KS, Baker D, Petersen F (2006) Drug discovery from natural products. J Ind Microbiol Biotechnol 33(7):523–531

    Article  Google Scholar 

  • Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8(12):536–544

    Article  Google Scholar 

  • Horikoshi K (1998) Barophiles: deep-sea microorganisms adapted to an extreme environment. Curr Opin Microbiol 1:291–295

    Article  Google Scholar 

  • Hoyoux A, Blaise V, Collins T, D’amico S, Gratia E, Huston AL, Marx JC, Sonan G, Zeng Y, Feller G, Gerday C (2004) Extreme catalysts from low-temperature environments. J Biosci Bioeng 98(5):317–330

    Google Scholar 

  • Kiriakoulakis K, Bett BJ, White M, Wolff GA (2004) Organic biogeochemistry of the Darwin Mounds, a deep-water coral ecosystem, of the NE Atlantic. Deep Sea Res Part I: Oceanogr Res Pap 51(12):1937–1954

    Article  Google Scholar 

  • Krüger M, Treude T, Wolters H, Nauhaus K, Boetius A (2005) Microbial methane turnover in different marine habitats palaeogeography. Palaeoclimatol Palaeoecol 227(1–3):6–17

    Article  Google Scholar 

  • Lack M, Short K, Willock A (2003) Managing risk and uncertainty in deep-sea fisheries: lessons from Orange Roughy. TRAFFIC Oceania and WWF Australia (http://www.wwf.org.uk/filelibrary/pdf/orangeroughy.pdf)

  • Li X, Qin L (2005) Metagenomics-based drug discovery and marine microbial diversity. Trends Biotechnol 23(11):539–543

    Article  Google Scholar 

  • Lopez-Garcia P, Forterre P (2000) DNA topology and the thermal stress response, a tale from mesophiles and hyperthermophiles. Bioessays 22(8):738–746

    Article  Google Scholar 

  • Mancuso Nichols CA, Guezennec J, Bowman JP (2005) Exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar Biotechnol 7:253–271

    Article  Google Scholar 

  • Margesin R, Schinner F (1997) Efficiency of indigenous and inoculated cold-adapted soil microorganisms for biodegradation of diesel oil in alpine soils. Appl Environ Microbiol 63:2660–2664

    Google Scholar 

  • Mattila P, Korpela J, Tenkanen T, Pitkanen K (1991) Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase—an extremely heat stable enzyme with proofreading activity. Nucleic Acids Res 19(18):4967–4973

    Article  Google Scholar 

  • Maugeri TL, Gugliandolo C, Caccamo D, Stackebrandt E (2002) Three novel halotolerant and thermophilic geobacillus strains from shallow marine vents. Syst Appl Microbiol 25:450–455

    Article  Google Scholar 

  • Miyadoh S (1993) Research on antibiotic screening in Japan over the last decade a producing microorganisms approach. Actinomycetologica 9:100–106

    Google Scholar 

  • Mombelli E, Shehi E, Fusi P, Tortora P (2002) Exploring hyperthermophilic proteins under pressure: theoretical aspects and experimental findings. Biochim Biophys Acta 1595(1–2):392–396

    Google Scholar 

  • Morita Y, Nakamura T, Hasan Q, Murakami Y, Yokoyama K, Tamiya E (1997) Cold-active enzymes from cold-adapted bacteria. J Am Oil Chem Soc 74:441–444

    Google Scholar 

  • Nakasone K, Ikegami A, Kato C, Usami R, Horikoshi K (1998) Mechanisms of gene expression controlled by pressure in deep-sea microorganisms. Extremophiles 2(3):149–154

    Article  Google Scholar 

  • Prieur D (1992) Microbiology of deep-sea hydrothermal vents. TIBTECH 15:242–244

    Google Scholar 

  • Reeve JN, Bailey KA, Li WT, Marc F, Sandman K, Soares DJ (2004) Archaeal histones: structures, stability and DNA binding. Biochem Soc Trans 32:227–230

    Article  Google Scholar 

  • Roberts JM, Long D, Wilson JB, Mortensen PB, Gage JD (2003) The cold-water coral Lophelia pertusa (Scleractinia) and enigmatic seabed mounds along the north-east Atlantic margin: are they related? Mar Pollut Bull 46(1):7–20

    Article  Google Scholar 

  • Salomon CE, Magarvey NA, Sherman DH (2004) Merging the potential of microbial genetics with biological and chemical diversity: an even brighter future for marine natural product drug discovery. Nat Prod Rep 21:105–121

    Article  Google Scholar 

  • Schiraldi C, De Rosa M (2002) The production of biocatalysts and biomolecules from extremophiles. Trends Biotechnol 20:515–521

    Article  Google Scholar 

  • Sujatha P, Bapi Raju KVVSN, Ramana T (2005) Studies on a new marine streptomycete BT-408 producing polyketide antibiotic SBR-22 effective against methicillin resistant Staphylococcus aureus. Microbiol Res 160(2):119–126

    Article  Google Scholar 

  • Tarasov VG, Gebruk AV, Mironov AN, Moskalev LI (2005) Deep-sea and shallow-water hydrothermal vent communities: two different phenomena? Chem Geol 224(1–3):5–39

    Article  Google Scholar 

  • Tehei M, Zaccai G (2005) Adaptation to extreme environments: macromolecular dynamics in complex systems. Biochim Biophys Acta 1724(3):404–410

    Google Scholar 

  • Tunnicliffe V, Thomson R (1999) The endeavour hot vents area: a pilot marine protected area in Canada’s pacific ocean. Report for Fisheries and Oceans Canada

  • Van Dover CL, Lutz RA (2004) Experimental ecology at deep-sea hydrothermal vents: a perspective. J Exp Mar Biol Ecol 300(1–2):273–307

    Article  Google Scholar 

  • Watling I, Norse EA (1998) Disturbance of the seabed by mobile fishing gear: a comparison to forest clear cutting. Conserv Biol 12(6):1180–1197

    Article  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  Google Scholar 

  • Williams ST, Goodfellow M, Alderson G, Wllington EM, Sneath PH, Sacki MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1747–1813

    Google Scholar 

  • Yayanos AA (1995) Microbiology to 10,500 meters in the deep sea. Annu Rev Microbiol 49:777–805

    Article  Google Scholar 

  • Zierenberg RA, Adams MWW, Arp AJ (2000) Life in extreme environments: hydrothermal vents. Proc Natl Acad Sci USA 97(24):12961–12962

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Synnes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Synnes, M. Bioprospecting of organisms from the deep sea: scientific and environmental aspects. Clean Techn Environ Policy 9, 53–59 (2007). https://doi.org/10.1007/s10098-006-0062-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-006-0062-7

Keywords

Navigation