Skip to main content

Advertisement

Log in

Risk factors and outcome associated with the acquisition of MDR linezolid-resistant Enterococcus faecium: a report from tertiary care centre

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Objective

The aim of the study was to determine the resistance profile of linezolid-resistant Enterococcus faecium (LREfm) and to investigate risk factors and outcomes associated with LREfm infections.

Material and methods

A prospective case-control study was undertaken (2019 to 2022) and included 202 patients with LREfm infections (cases) and 200 controls with LSEfm infections. Clinical data was prospectively collected and analysed for risk factors and outcomes. Antimicrobial susceptibility was performed, and resistance profile was studied using WHOnet.

Results

Risk factors associated with LREfm infection were site of infection UTI (OR 5.87, 95% CI 2.59–13.29, p ≤ 0.001), prior use of carbapenem (OR 2.85 95% CI 1.62–5.02, p ≤ 0.001) and linezolid (OR 10.13, 95% CI 4.13–24.82, p ≤ 0.001), use of central line (OR 5.54, 95% CI 2.35–13.09, p ≤ 0.001), urinary catheter (OR 0.29, 95% CI 0.12–0.70, p ≤ 0.001) and ventilation (OR 14.87, 95% CI 7.86–28.11, p ≤ 0.007). The hospital stay 8–14 days (< 0.001) prior to infection and the mortality rate (p = 0.003) were also significantly high among patients with LREfm infections. Linezolid and vancomycin resistance coexisted; further, MDR, XDR and PDR phenotypes were significantly higher among LREfm.

Conclusion

This study provided insight into epidemiology of MDR LREfm in a setting where linezolid use is high. The main drivers of infections with LREfm are multiple, including use of carbapenems and linezolid. Invasive procedures and increased hospital stay facilitate spread through breach in infection control practises. As therapeutic options are limited, ongoing surveillance of LREfm and VRE is critical to guide appropriate use of linezolid and infection control policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The generated data during the current study are not publicly available but will be provided by corresponding author on reasonable request.

Abbreviations

LREfm:

Linezolid-resistant E. faecium

LSEfm:

Linezolid-sensitive E. faecium

VREfm:

Vancomycin-resistant E. faecium

VRE:

Vancomycin-resistant enterococci

MIC:

Minimum inhibitory concentration

UTI:

Urinary tract infection

BSI:

Blood sepsis infection

SSTI:

Skin and soft tissue infection

MDR:

Multidrug resistant

T1DM:

Type 1 diabetes

T2DM:

Type 2 diabetes

HTN:

Hypertension

COPD:

Chronic obstructive pulmonary disease

CKD:

Chronic kidney disease

References

  1. Ramos S, Silva V, Dapkevicius MLE, Igrejas G, Poeta P (2020) Enterococci, from harmless bacteria to a pathogen. Microorganisms 8(8):1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zaheer R, Cook SR, Barbieri R, Goji N, Cameron A, Petkau A, Polo RO, Tymensen L, Stamm C, Song J, Hannon S, Jones T, Church D, Booker CW, Amoako K, Van Domselaar G, Read RR, McAllister TA (2020) Surveillance of Enterococcus spp. reveals distinct species and antimicrobial resistance diversity across a One-Health continuum. Sci Rep 10(1):3937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rodríguez-Noriega E, Hernández-Morfin N, Garza-Gonzalez E, Bocanegra-Ibarias P, Flores-Treviño S, Esparza-Ahumada S et al (2020) Risk factors and outcome associated with the acquisition of linezolid-resistant Enterococcus faecalis. J Glob Antimicrob Resist 21:405–409

    Article  PubMed  Google Scholar 

  4. Werner G, Coque TM, Hammerum AM, Hope R, Hryniewicz W, Johnson A et al (2008) Emergence and spread of vancomycin resistance among enterococci in Europe. Eurosurveillance 13(47):19046

    Article  PubMed  Google Scholar 

  5. Nilsson O (2012) Vancomycin resistant enterococci in farm animals - occurrence and importance. Infect Ecol Epidemiology 2:16959. https://doi.org/10.3402/iee.v2i0.16959

    Article  Google Scholar 

  6. Jahansepas A, Aghazadeh M, Rezaee MA, Hasani A, Sharifi Y, Aghazadeh T, Mardaneh J (2018) Occurrence of Enterococcus faecalis and Enterococcus faecium in various clinical infections: detection of their drug resistance and virulence determinants. Microbial Drug Resist (Larchmont, N.Y.) 24(1):76–82

    Article  CAS  Google Scholar 

  7. Hendrickx AP, van Schaik W, Willems RJ (2013) The cell wall architecture of Enterococcus faecium: from resistance to pathogenesis. Future Microbiol 8(8):993–1010

    Article  CAS  PubMed  Google Scholar 

  8. El-Kersh TA, Marie MA, Al-Sheikh YA, Al-Agamy MH, Al Bloushy AA (2016) Prevalence and risk factors of early fecal carriage of Enterococcus faecalis and Staphylococcus spp and their antimicrobial resistant patterns among healthy neonates born in a hospital setting in central Saudi Arabia. Saudi Med J 37(3):280–287

    Article  PubMed  PubMed Central  Google Scholar 

  9. Agudelo Higuita NI, Huycke MM (2014) Enterococcal disease, epidemiology, and implications for treatment. In M. S. Gilmore (Eds.) et. al., Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary.

    Google Scholar 

  10. Ayobami O, Willrich N, Reuss A, Eckmanns T, Markwart R (2020) The ongoing challenge of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in Europe: an epidemiological analysis of bloodstream infections. Emerg Microbes Infect 9(1):1180–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saenhom N, Boueroy P, Chopjitt P, Hatrongjit R, Kerdsin A (2022) Distinguishing clinical Enterococcus faecium strains and resistance to vancomycin using a simple in-house screening test. Antibiotics (Basel, Switzerland) 11(3):286

    CAS  PubMed  Google Scholar 

  12. Hashemian SMR, Farhadi T, Ganjparvar M (2018) Linezolid: a review of its properties, function, and use in critical care. Drug Des Devel Ther 12:1759–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krawczyk B, Wysocka M, Kotłowski R, Bronk M, Michalik M, Samet A (2020) Linezolid-resistant Enterococcus faecium strains isolated from one hospital in Poland–commensals or hospital-adapted pathogens? PLoS One 15(5):e0233504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Levitus M, Rewane A, Perera TB (2023) Vancomycin-resistant enterococci. In: In StatPearls. StatPearls Publishing

    Google Scholar 

  15. Prystowsky J, Siddiqui F, Chosay J, Shinabarger DL, Millichap J, Peterson LR, Noskin GA (2001) Resistance to linezolid: characterization of mutations in rRNA and comparison of their occurrences in vancomycin-resistant enterococci. Antimicrob Agents Chemother 45(7):2154–2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shen J, Wang Y, Schwarz S (2013) Presence and dissemination of the multiresistance gene cfr in gram-positive and gram-negative bacteria. J Antimicrob Chemother 68(8):1697–1706

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z, Zhang R, Li J, Zhao Q, He T, Wang D, Wang Z, Shen Y, Li Y, Feßler AT, Wu C, Yu H, Deng X, Xia X, Shen J (2015) A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother 70(8):2182–2190

    Article  CAS  PubMed  Google Scholar 

  18. Pai MP, Rodvold KA, Schreckenberger PC, Gonzales RD, Petrolatti JM, Quinn JP (2002) Risk factors associated with the development of infection with linezolid- and vancomycin-resistant Enterococcus faecium. Clin Infect Dis 35(10):1269–1272

    Article  PubMed  Google Scholar 

  19. Kainer MA, Devasia RA, Jones TF, Simmons BP, Melton K, Chow S et al (2007) Response to emerging infection leading to outbreak of linezolid-resistant enterococci. Emerg Infect Dis 13(7):1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith TT, Tamma PD, Do TB, Dzintars KE, Zhao Y, Cosgrove SE, Avdic E (2018) Prolonged linezolid use is associated with the development of linezolid-resistant Enterococcus faecium. Diagn Microbiol Infect Dis 91(2):161–163

    Article  CAS  PubMed  Google Scholar 

  21. Greene MH, Harris BD, Nesbitt WJ, Watson ML, Wright PW, Talbot TR, Nelson GE (2018) Risk factors and outcomes associated with acquisition of daptomycin and linezolid-nonsusceptible vancomycin-resistant Enterococcus. Open Forum Infect Dis 5(10):ofy185

    Article  PubMed  PubMed Central  Google Scholar 

  22. Clinical and Laboratory Standards Institute (2023) performance Standards for Antimicrobial Susceptibility Testing: 33th informational supplement M100-S30. Wayne, Pa, USA

    Google Scholar 

  23. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281

    Article  CAS  PubMed  Google Scholar 

  24. Harris AD, Karchmer TB, Carmeli Y, Samore MH (2001) Methodological principles of case-control studies that analyzed risk factors for antibiotic resistance: a systematic review. Clin Infect Dis 32(7):1055–1061

    Article  CAS  PubMed  Google Scholar 

  25. Martone WJ (1998) Spread of vancomycin-resistant enterococci: why did it happen in the United States? Infect Control Hosp Epidemiol 19(8):539–545

    Article  CAS  PubMed  Google Scholar 

  26. Faron ML, Ledeboer NA, Buchan BW (2016) Resistance mechanisms, epidemiology, and approaches to screening for vancomycin-resistant Enterococcus in the health care setting. J Clin Microbiol 54(10):2436–2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McDermott H, Skally M, O'Rourke J, Humphreys H, Fitzgerald-Hughes D (2018) Near-patient environmental contamination of an intensive care unit with vancomycin-resistant Enterococci (VRE) and extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E) before and after the introduction of chlorhexidine bathing for patients. Infect Control Hosp Epidemiol 39(9):1131–1132

    Article  PubMed  Google Scholar 

  28. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y, Ouellette M, Outterson K, Patel J, Cavaleri M, Cox EM, Houchens CR, Grayson ML, Hansen P, Singh N et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18(3):318–327

    Article  PubMed  Google Scholar 

  29. Klare I, Fleige C, Geringer U, Thürmer A, Bender J, Mutters NT et al (2015) Increased frequency of linezolid resistance among clinical Enterococcus faecium isolates from German hospital patients. J Glob Antimicrob Resist 3(2):128–131

    Article  CAS  PubMed  Google Scholar 

  30. Zurenko GE, Yagi BH, Schaadt RD, Allison JW, Kilburn JO, Glickman SE, Hutchinson DK, Barbachyn MR, Brickner SJ (1996) In vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents. Antimicrob Agents Chemother 40(4):839–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zurenko G, Todd WM, Hafkin BA, Myers B, Kaufman C, Bock J (1999) Development of linezolid-resistant Enterococcus faecium in two compassionate use program patients treated with linezolid [abstract 848]. In: Program and abstracts of the 39th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy (San Francisco). American Society for Microbiology, Washington, DC, p 118

    Google Scholar 

  32. Rahim S, Pillai SK, Gold HS, Venkataraman L, Inglima K, Press RA (2003) Linezolid-resistant, vancomycin-resistant Enterococcus faecium infection in patients without prior exposure to linezolid. Clin Infect Dis 36(11):E146–E148

    Article  PubMed  Google Scholar 

  33. Bai B, Hu K, Zeng J, Yao W, Li D, Pu Z et al (2019) Linezolid consumption facilitates the development of linezolid resistance in Enterococcus faecalis in a tertiary-care hospital: a 5-year surveillance study. Microb Drug Resist 25(6):791–798

    Article  CAS  PubMed  Google Scholar 

  34. Chen M, Pan H, Lou Y, Wu Z, Zhang J, Huang Y, Yu W, Qiu Y (2018) Epidemiological characteristics and genetic structure of linezolid-resistant Enterococcus faecalis. Infect Drug Resist 11:2397–2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gudiol C, Ayats J, Camoez M, Domínguez MÁ, García-Vidal C, Bodro M et al (2013) Increase in bloodstream infection due to vancomycin-susceptible Enterococcus faecium in cancer patients: risk factors, molecular epidemiology and outcomes. PLoS One 8(9):e74734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Olearo F, Both A, Campos CB, Hilgarth H, Klupp EM, Hansen JL, Rohde H (2021) Emergence of linezolid-resistance in vancomycin-resistant Enterococcus faecium ST117 associated with increased linezolid-consumption. Int J Med Microbiol 311(2):151477

    Article  CAS  PubMed  Google Scholar 

  37. Pogue JM, Paterson DL, Pasculle AW, Potoski BA (2007) Determination of risk factors associated with isolation of linezolid-resistant strains of vancomycin-resistant Enterococcus. Infect Control Hosp Epidemiol 28(12):1382–1388

    Article  PubMed  Google Scholar 

  38. Zou J, Xia Y (2020) Molecular characteristics and risk factors associated with linezolid-resistant Enterococcus faecalis infection in Southwest China. J Glob Antimicrob Resist 22:504–510

    Article  PubMed  Google Scholar 

  39. Golob M, Pate M, Kušar D, Dermota U, Avberšek J, Papić B, Zdovc I (2019) Antimicrobial resistance and virulence genes in Enterococcus faecium and Enterococcus faecalis from humans and retail red meat. BioMed Res Int 2019

  40. Shukla BS, Shelburne S, Reyes K, Kamboj M, Lewis JD, Rincon SL, Reyes J, Carvajal LP, Panesso D, Sifri CD, Zervos MJ, Pamer EG, Tran TT, Adachi J, Munita JM, Hasbun R, Arias CA (2016) Influence of minimum inhibitory concentration in clinical outcomes of Enterococcus faecium bacteremia treated with daptomycin: is it time to change the breakpoint? Clin Infect Dis 62(12):1514–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Crank CW, Scheetz MH, Brielmaier B, Rose WE, Patel GP, Ritchie DJ, Segreti J (2010) Comparison of outcomes from daptomycin or linezolid treatment for vancomycin-resistant enterococcal bloodstream infection: a retrospective, multicenter, cohort study. Clin Ther 32(10):1713–1719

    Article  CAS  PubMed  Google Scholar 

  42. García-Martínez L, Gracia-Ahulfinger I, Machuca I, Cantisán S, De La Fuente S, Natera C, Pérez-Nadales E, Vidal E, Rivero A, Rodríguez-Lopez F, Del Prado JR, Torre-Cisneros J (2016) Impact of the PROVAUR stewardship programme on linezolid resistance in a tertiary university hospital: a before-and-after interventional study. J Antimicrob Chemother 71(9):2606–2611

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by Indian Council of Medical Research, Government of India, Grant No. AMR/Adhoc/238/2020-ECD-II.

Author information

Authors and Affiliations

Authors

Contributions

RG: conceived and designed the experiment; VR: experimental work; RG, VR: manuscript writing; VR, RG, MA-uM: data analysis; NKA, RS, KCD: provided Data. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Mohammad Amin-ul Mannan or Rajni Gaind.

Ethics declarations

Ethics approval

This study was approved by the institutional ethics committee (IEC/VMMC/SJH/PROJECT/2020-10/CC-79).

Consent to participate

Informed consent was obtained from all individual participants included in the study. All methods were carried out in accordance with relevant guidelines and regulations.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 51 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, V., Aye, N.K., Saksena, R. et al. Risk factors and outcome associated with the acquisition of MDR linezolid-resistant Enterococcus faecium: a report from tertiary care centre. Eur J Clin Microbiol Infect Dis 43, 767–775 (2024). https://doi.org/10.1007/s10096-024-04784-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-024-04784-0

Keywords

Navigation