Skip to main content
Log in

Characterization of an outbreak caused by Elizabethkingia miricola using Fourier-transform infrared (FTIR) spectroscopy

  • Brief Report
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Fourier-transform infrared (FTIR) spectroscopy has the potential to be used for bacterial typing and outbreak characterization. We evaluated FTIR for the characterization of an outbreak caused by Elizabethkingia miricola. During the 2020–2021 period, 26 isolates (23 clinical and 3 environmental) were collected and analyzed by FTIR (IR Biotyper) and core-genome MLST (cgMLST), in addition to antimicrobial susceptibility testing. FTIR spectroscopy and cgMLST showed that 22 of the isolates were related to the outbreak, including the environmental samples, with only one discordance between both methods. Then, FTIR is useful for E. miricola typing and can be easily implemented in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Lin JN, Lai CH, Yang CH, Huang YH (2019) Elizabethkingia infections in humans: from genomics to clinics. Microorganisms 7(9). https://doi.org/10.3390/microorganisms7090295

  2. Yung CF, Maiwald M, Loo LH, Soong HY, Tan CB, Lim PK, Li L, Tan NW, Chong CY, Tee N, Thoon KC, Chan YH (2018) Elizabethkingia anophelis and association with tap water and handwashing, Singapore. Emerg Infect Dis 24(9):1730–1733. https://doi.org/10.3201/eid2409.171843

    Article  PubMed  PubMed Central  Google Scholar 

  3. Perrin A, Larsonneur E, Nicholson AC, Edwards DJ, Gundlach KM, Whitney AM, Gulvik CA, Bell ME, Rendueles O, Cury J, Hugon P, Clermont D, Enouf V, Loparev V, Juieng P, Monson T, Warshauer D, Elbadawi LI, Walters MS et al (2017) Evolutionary dynamics and genomic features of the Elizabethkingia anophelis 2015 to 2016 Wisconsin outbreak strain. Nat Commun 8:15483. https://doi.org/10.1038/ncomms15483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Erinmez M, Buyuktas Manay A, Zer Y (2021) Investigation of an outbreak of Elizabethkingia meningoseptica on a pediatric intensive care unit. GMS Hyg Infect Control 16:Doc19. https://doi.org/10.3205/dgkh000390

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rossati A, Kroumova V, Bargiacchi O, Brustia D, Luigi Garavelli P (2015) Elizabethkingia miricola bacteriemia in a young woman with acute alcoholic pancreatitis. Presse Med 44(10):1071–1072. https://doi.org/10.1016/j.lpm.2015.08.003

    Article  PubMed  Google Scholar 

  6. Opota O, Diene SM, Bertelli C, Prod'hom G, Eckert P, Greub G (2017) Genome of the carbapenemase-producing clinical isolate Elizabethkingia miricola EM_CHUV and comparative genomics with Elizabethkingia meningoseptica and Elizabethkingia anophelis: evidence for intrinsic multidrug resistance trait of emerging pathogens. Int J Antimicrob Agents 49(1):93–97. https://doi.org/10.1016/j.ijantimicag.2016.09.031

    Article  CAS  PubMed  Google Scholar 

  7. Silva L, Rodrigues C, Lira A, Leao M, Mota M, Lopes P, Novais A, Peixe L (2020) Fourier transform infrared (FT-IR) spectroscopy typing: a real-time analysis of an outbreak by carbapenem-resistant Klebsiella pneumoniae. Eur J Clin Microbiol Infect Dis 39(12):2471–2475. https://doi.org/10.1007/s10096-020-03956-y

    Article  CAS  PubMed  Google Scholar 

  8. Cordovana M, Mauder N, Kostrzewa M, Wille A, Rojak S, Hagen RM, Ambretti S, Pongolini S, Soliani L, Justesen US, Holt HM, Join-Lambert O, Hello SL, Auzou M, Veloo AC, May J, Frickmann H, Dekker D (2021) Classification of Salmonella enterica of the (para-)typhoid fever group by Fourier-transform infrared (FTIR) spectroscopy. Microorganisms 9(4). https://doi.org/10.3390/microorganisms9040853

  9. Quintelas C, Ferreira EC, Lopes JA, Sousa C (2018) An overview of the evolution of infrared spectroscopy applied to bacterial typing. Biotechnol J 13(1). https://doi.org/10.1002/biot.201700449

  10. Novais A, Freitas AR, Rodrigues C, Peixe L (2019) Fourier transform infrared spectroscopy: unlocking fundamentals and prospects for bacterial strain typing. Eur J Clin Microbiol Infect Dis 38(3):427–448. https://doi.org/10.1007/s10096-018-3431-3

    Article  PubMed  Google Scholar 

  11. Balloux F, Bronstad Brynildsrud O, van Dorp L, Shaw LP, Chen H, Harris KA, Wang H, Eldholm V (2018) From theory to practice: translating whole-genome sequencing (WGS) into the clinic. Trends Microbiol 26(12):1035–1048. https://doi.org/10.1016/j.tim.2018.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang-Wang JH, Bordoy AE, Martro E, Quesada MD, Perez-Vazquez M, Guerrero-Murillo M, Tiburcio A, Navarro M, Castella L, Sopena N, Casas I, Saludes V, Gimenez M, Cardona PJ (2022) Evaluation of Fourier transform infrared spectroscopy as a first-line typing tool for the identification of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae outbreaks in the hospital setting. Front Microbiol 13:897161. https://doi.org/10.3389/fmicb.2022.897161

    Article  PubMed  PubMed Central  Google Scholar 

  13. Martak D, Valot B, Sauget M, Cholley P, Thouverez M, Bertrand X, Hocquet D (2019) Fourier-transform infrared spectroscopy can quickly type gram-negative bacilli responsible for hospital outbreaks. Front Microbiol 10:1440. https://doi.org/10.3389/fmicb.2019.01440

    Article  PubMed  PubMed Central  Google Scholar 

  14. (CLSI) CaLS (2023) Performance standards for antimicrobial susceptibility testing, 33rd edn CLSI supplement M100. Clinical and Laboratory Standards Institute, USA

    Google Scholar 

  15. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  16. Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13(6):e1005595. https://doi.org/10.1371/journal.pcbi.1005595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  CAS  PubMed  Google Scholar 

  18. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM (2016) Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17(1):132. https://doi.org/10.1186/s13059-016-0997-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hunt M, Mather AE, Sanchez-Buso L, Page AJ, Parkhill J, Keane JA, Harris SR (2017) ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom 3(10):e000131. https://doi.org/10.1099/mgen.0.000131

    Article  PubMed  PubMed Central  Google Scholar 

  20. Comba IY, Schuetz AN, Misra A, Friedman DZP, Stevens R, Patel R, Lancaster ZD, Shah A (2022) Antimicrobial susceptibility of Elizabethkingia species: report from a reference laboratory. J Clin Microbiol 60(6):e0254121. https://doi.org/10.1128/jcm.02541-21

    Article  CAS  PubMed  Google Scholar 

  21. Chawla K, Gopinathan A, Varma M, Mukhopadhyay C (2015) Elizabethkingia meningoseptica outbreak in intensive care unit. J Global Infect Dis 7(1):43–44. https://doi.org/10.4103/0974-777x.150890

    Article  Google Scholar 

  22. McTaggart LR, Stapleton PJ, Eshaghi A, Soares D, Brisse S, Patel SN, Kus JV (2019) Application of whole genome sequencing to query a potential outbreak of Elizabethkingia anophelis in Ontario, , Canada. Access Microbiol 1(2):e000017. https://doi.org/10.1099/acmi.0.000017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guerpillon B, Fangous MS, Le Breton E, Artus M, le Gall F, Khatchatourian L, Talarmin JP, Plesiat P, Jeannot K, Saidani N, Rolland-Jacob G (2022) Elizabethkingia anophelis outbreak in France. Infect Dis Now 52(5):299–303. https://doi.org/10.1016/j.idnow.2022.05.005

    Article  CAS  PubMed  Google Scholar 

  24. Lee YL, Liu KM, Chang HL, Lin JS, Kung FY, Ho CM, Lin KH, Chen YT (2021) A dominant strain of Elizabethkingia anophelis emerged from a hospital water system to cause a three-year outbreak in a respiratory care center. J Hosp Infect 108:43–51. https://doi.org/10.1016/j.jhin.2020.10.025

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the projects PI18/00997 from the Health Research Fund (FIS. Instituto de Salud Carlos III. Plan Nacional de I+D+I 2013-2016) of the Carlos III Health Institute (ISCIII, Madrid, Spain) partially financed by the European Regional Development Fund (FEDER) “A way of making Europe.” BRS (CPII19/00002) is the recipient of a Miguel Servet contract supported by the FIS. DRT has been funded by the IiSGM through its intramural programme.

Author information

Authors and Affiliations

Authors

Contributions

DRT: conceptualization, experimentation, formal analysis, data collection, validation, visualization, original draft preparation, and review/editing. AC: experimentation, formal analysis, validation, writing and review/editing. JEGC, JOI, MPV, JS: experimentation, data analysis, writing and review/editing. BRS, EC: conceptualization, experimentation, project administration, formal analysis, supervision, validation, visualization, original draft preparation and review/editing.

Corresponding author

Correspondence to David Rodríguez-Temporal.

Ethics declarations

Ethics approval

The Ethics Committee of the Gregorio Marañón Hospital (CEIm) evaluated this project and considered that all the conditions for waiving informed consent were met, since the study was conducted with microbiological samples and not with human products.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Temporal, D., García-Cañada, J.E., Candela, A. et al. Characterization of an outbreak caused by Elizabethkingia miricola using Fourier-transform infrared (FTIR) spectroscopy. Eur J Clin Microbiol Infect Dis 43, 797–803 (2024). https://doi.org/10.1007/s10096-024-04764-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-024-04764-4

Keywords

Navigation