Skip to main content
Log in

Performance evaluation of core genome multilocus sequence typing for genotyping of Mycobacterium tuberculosis strains in China: based on multicenter, population-based collection

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the performance of core genome multilocus sequence typing (cgMLST) for genotyping Mycobacterium tuberculosis (M.tuberculosis) Strains in regions where the lineage 2 strains predominate.

Methods

We compared clustering by whole-genome SNP typing with cgMLST clustering in the analysis of WGS data of 6240 strains from five regions of China. Using both the receiver operating characteristic (ROC) curve and epidemiological investigation to determine the optimal threshold for defining genomic clustering by cgMLST. The performance of cgMLST was evaluated by quantifying the sensitivity, specificity and concordance of clustering between two methods. Logistic regression was used to gauge the impact of strain genetic diversity and lineage on cgMLST clustering.

Results

The optimal threshold for cgMLST to define genomic clustering was determined to be ≤ 10 allelic differences between strains. The overall sensitivity and specificity of cgMLST averaged 99.6% and 96.3%, respectively; the concordance of clustering between two methods averaged 97.1%. Concordance was significantly correlated with strain genetic diversity and was 3.99 times (95% CI, 2.94–5.42) higher in regions with high genetic diversity (π > 1.55 × 10–4) compared to regions with low genetic diversity. The difference missed statistical significance, while concordance for lineage 2 strains (96.8%) was less than that for lineage 4 strains (98.3%).

Conclusion 

cgMLST showed a discriminatory power comparable to whole-genome SNP typing and could be used to genotype clinical M.tuberculosis strains in different regions of China. The discriminative power of cgMLST was significantly correlated with strain genetic diversity and was slightly lower with strains from regions with low genetic diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Whole-genome sequencing (WGS) data used in this study have been previously published and are cited in the Methods section of the paper. These WGS data also are available in the Genome Sequence Archive (https://bigd.big.ac.cn/gsa) under BioProject CRA003250, PRJCA010372, PRJCA008815, and PRJCA008816, and the Europen Nucleotide Archive (https://www.ebi.ac.uk/ena/browser/home) under BioProject PRJEB23157.

References

  1. Jagielski T, Minias A, van Ingen J, Rastogi N, Brzostek A, Żaczek A, Dziadek J (2016) Methodological and clinical aspects of the molecular epidemiology of Mycobacterium tuberculosis and other mycobacteria. Clin Microbiol Rev 29:239–290. https://doi.org/10.1128/cmr.00055-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Niemann S, Merker M, Kohl T, Supply P (2016) Impact of genetic diversity on the biology of Mycobacterium tuberculosis complex strains. Microbiol Spectr 4. https://doi.org/10.1128/microbiolspec.TBTB2-0022-2016

  3. Merker M, Kohl TA, Niemann S, Supply P (2017) The evolution of strain typing in the Mycobacterium tuberculosis complex. Adv Exp Med Biol 1019:43–78. https://doi.org/10.1007/978-3-319-64371-7_3

    Article  PubMed  CAS  Google Scholar 

  4. Nikolayevskyy V, Kranzer K, Niemann S, Drobniewski F (2016) Whole genome sequencing of Mycobacterium tuberculosis for detection of recent transmission and tracing outbreaks: a systematic review. Tuberculosis (Edinb) 98:77–85. https://doi.org/10.1016/j.tube.2016.02.009

    Article  PubMed  CAS  Google Scholar 

  5. Jamieson FB, Teatero S, Guthrie JL, Neemuchwala A, Fittipaldi N, Mehaffy C (2014) Whole-genome sequencing of the Mycobacterium tuberculosis Manila sublineage results in less clustering and better resolution than mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing and spoligotyping. J Clin Microbiol 52:3795–3798. https://doi.org/10.1128/jcm.01726-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Koster KJ, Largen A, Foster JT, Drees KP, Qian L, Desmond E, Wan X, Hou S, Douglas JT (2018) Genomic sequencing is required for identification of tuberculosis transmission in Hawaii. BMC Infect Dis 18:608. https://doi.org/10.1186/s12879-018-3502-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Meehan CJ, Moris P, Kohl TA, Pečerska J, Akter S, Merker M, Utpatel C, Beckert P, Gehre F, Lempens P, Stadler T, Kaswa MK, Kühnert D, Niemann S, de Jong BC (2018) The relationship between transmission time and clustering methods in Mycobacterium tuberculosis epidemiology. EBioMedicine 37:410–416. https://doi.org/10.1016/j.ebiom.2018.10.013

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wyllie DH, Davidson JA, Grace Smith E, Rathod P, Crook DW, Peto TEA, Robinson E, Walker T, Campbell C (2018) A quantitative evaluation of MIRU-VNTR typing against whole-genome sequencing for identifying Mycobacterium tuberculosis transmission: a prospective observational cohort study. EBioMedicine 34:122–130. https://doi.org/10.1016/j.ebiom.2018.07.019

    Article  PubMed  PubMed Central  Google Scholar 

  9. Satta G, Lipman M, Smith GP, Arnold C, Kon OM, McHugh TD (2018) Mycobacterium tuberculosis and whole-genome sequencing: how close are we to unleashing its full potential? Clin Microbiol Infect 24:604–609. https://doi.org/10.1016/j.cmi.2017.10.030

    Article  PubMed  CAS  Google Scholar 

  10. Schürch AC, Arredondo-Alonso S, Willems RJL, Goering RV (2018) Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. Clin Microbiol Infect 24:350–354. https://doi.org/10.1016/j.cmi.2017.12.016

    Article  PubMed  CAS  Google Scholar 

  11. Maiden MC, Jansen van Rensburg MJ, Bray JE, Earle SG, Ford SA, Jolley KA, McCarthy ND (2013) MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol 11:728–736. https://doi.org/10.1038/nrmicro3093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kohl TA, Harmsen D, Rothgänger J, Walker T, Diel R, Niemann S (2018) Harmonized genome wide typing of tubercle bacilli using a web-based gene-by-gene nomenclature system. EBioMedicine 34:131–138. https://doi.org/10.1016/j.ebiom.2018.07.030

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bouzouita I, Cabibbe AM, Trovato A, Daroui H, Ghariani A, Midouni B, Essalah L, Mehiri E, Cirillo DM, Saidi LS (2019) Whole-genome sequencing of drug-resistant Mycobacterium tuberculosis strains, Tunisia, 2012–2016. Emerg Infect Dis 25:538–546. https://doi.org/10.3201/eid2503.181370

    Article  PubMed  CAS  Google Scholar 

  14. Jajou R, Kohl TA, Walker T, Norman A, Cirillo DM, Tagliani E, Niemann S, de Neeling A, Lillebaek T, Anthony RM, van Soolingen D (2019) Towards standardisation: comparison of five whole genome sequencing (WGS) analysis pipelines for detection of epidemiologically linked tuberculosis cases. Euro Surveill 24. https://doi.org/10.2807/1560-7917.Es.2019.24.50.1900130

  15. Jones RC, Harris LG, Morgan S, Ruddy MC, Perry M, Williams R, Humphrey T, Temple M, Davies AP (2019) Phylogenetic analysis of Mycobacterium tuberculosis strains in wales by use of core genome multilocus sequence typing to analyze whole-genome sequencing data. J Clin Microbiol 57. https://doi.org/10.1128/jcm.02025-18

  16. Yang T, Wang Y, Liu Q, Jiang Q, Hong C, Wu L, Li S, Zhu C, Takiff H, Yu W, Tan W, Gao Q (2021) A population-based genomic epidemiological study of the source of tuberculosis infections in an emerging city: Shenzhen, China. Lancet Reg Health West Pac 8:100106. https://doi.org/10.1016/j.lanwpc.2021.100106

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li M, Lu L, Jiang Q, Jiang Y, Yang C, Li J, Zhang Y, Zou J, Li Y, Dai W, Hong J, Takiff H, Shen X, Guo X, Yuan Z, Gao Q (2023) Genotypic and spatial analysis of transmission dynamics of tuberculosis in Shanghai, China: a 10-year prospective population-based surveillance study. The Lancet Regional Health - Western Pacific 38. https://doi.org/10.1016/j.lanwpc.2023.100833

  18. Li M, Guo M, Peng Y, Jiang Q, Xia L, Zhong S, Qiu Y, Su X, Zhang S, Yang C, Mijiti P, Mao Q, Takiff H, Li F, Chen C, Gao Q (2022) High proportion of tuberculosis transmission among social contacts in rural China: a 12-year prospective population-based genomic epidemiological study. Emerg Microbes Infect 11:2102–2111. https://doi.org/10.1080/22221751.2022.2112912

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu Q, Liu H, Shi L, Gan M, Zhao X, Lyu LD, Takiff HE, Wan K, Gao Q (2021) Local adaptation of Mycobacterium tuberculosis on the Tibetan Plateau. Proc Natl Acad Sci U S A 118. https://doi.org/10.1073/pnas.2017831118

  20. Jiang H, Liu M, Zhang Y, Yin J, Li Z, Zhu C, Li Q, Luo X, Ji T, Zhang J, Yang Y, Wang X, Luo Y, Tao L, Zhang F, Liu X, Li W, Guo X (2021) Changes in incidence and epidemiological characteristics of pulmonary tuberculosis in mainland China, 2005–2016. JAMA Netw Open 4:e215302. https://doi.org/10.1001/jamanetworkopen.2021.5302

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jiang Q, Liu Q, Ji L, Li J, Zeng Y, Meng L, Luo G, Yang C, Takiff HE, Yang Z, Tan W, Yu W, Gao Q (2020) Citywide transmission of multidrug-resistant tuberculosis under China’s rapid urbanization: a retrospective population-based genomic spatial epidemiological study. Clin Infect Dis 71:142–151. https://doi.org/10.1093/cid/ciz790

    Article  PubMed  Google Scholar 

  22. Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, Parkhill J, Malla B, Berg S, Thwaites G, Yeboah-Manu D, Bothamley G, Mei J, Wei L, Bentley S, Harris SR, Niemann S, Diel R, Aseffa A, Gao Q, Young D, Gagneux S (2013) Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 45:1176–1182. https://doi.org/10.1038/ng.2744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yang C, Luo T, Shen X, Wu J, Gan M, Xu P, Wu Z, Lin S, Tian J, Liu Q, Yuan Z, Mei J, DeRiemer K, Gao Q (2017) Transmission of multidrug-resistant Mycobacterium tuberculosis in Shanghai, China: a retrospective observational study using whole-genome sequencing and epidemiological investigation. Lancet Infect Dis 17:275–284. https://doi.org/10.1016/S1473-3099(16)30418-2

    Article  PubMed  CAS  Google Scholar 

  24. Coll F, McNerney R, Guerra-Assunção JA, Glynn JR, Perdigão J, Viveiros M, Portugal I, Pain A, Martin N, Clark TG (2014) A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun 5:4812. https://doi.org/10.1038/ncomms5812

    Article  PubMed  CAS  Google Scholar 

  25. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12:77. https://doi.org/10.1186/1471-2105-12-77

    Article  PubMed  PubMed Central  Google Scholar 

  26. Paradis E (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420. https://doi.org/10.1093/bioinformatics/btp696

    Article  PubMed  CAS  Google Scholar 

  27. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A 70:3321–3323. https://doi.org/10.1073/pnas.70.12.3321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Liu Q, Ma A, Wei L, Pang Y, Wu B, Luo T, Zhou Y, Zheng HX, Jiang Q, Gan M, Zuo T, Liu M, Yang C, Jin L, Comas I, Gagneux S, Zhao Y, Pepperell CS, Gao Q (2018) China’s tuberculosis epidemic stems from historical expansion of four strains of Mycobacterium tuberculosis. Nat Ecol Evol 2:1982–1992. https://doi.org/10.1038/s41559-018-0680-6

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sreevatsan S, Pan X, Stockbauer KE, Connell ND, Kreiswirth BN, Whittam TS, Musser JM (1997) Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci U S A 94:9869–9874. https://doi.org/10.1073/pnas.94.18.9869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Comas I, Homolka S, Niemann S, Gagneux S (2009) Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS One 4:e7815. https://doi.org/10.1371/journal.pone.0007815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Cabibbe AM, Trovato A, De Filippo MR, Ghodousi A, Rindi L, Garzelli C, Baretti S, Allodi G, Mannino R, Rossolini GM, Bartoloni A, Tortoli E, Cirillo DM (2018) Countrywide implementation of whole genome sequencing: an opportunity to improve tuberculosis management, surveillance and contact tracing in low incidence countries. Eur Respir J 51. https://doi.org/10.1183/13993003.00387-2018

  32. Tagliani E, Anthony R, Kohl TA, de Neeling A, Nikolayevskyy V, Ködmön C, Maurer FP, Niemann S, van Soolingen D, van der Werf MJ, Cirillo DM (2021) Use of a whole genome sequencing-based approach for Mycobacterium tuberculosis surveillance in Europe in 2017–2019: an ECDC pilot study. Eur Respir J 57. https://doi.org/10.1183/13993003.02272-2020

  33. Allix-Béguec C, Wahl C, Hanekom M, Nikolayevskyy V, Drobniewski F, Maeda S, Campos-Herrero I, Mokrousov I, Niemann S, Kontsevaya I, Rastogi N, Samper S, Sng LH, Warren RM, Supply P (2014) Proposal of a consensus set of hypervariable mycobacterial interspersed repetitive-unit-variable-number tandem-repeat loci for subtyping of Mycobacterium tuberculosis Beijing isolates. J Clin Microbiol 52:164–172. https://doi.org/10.1128/jcm.02519-13

    Article  PubMed  PubMed Central  Google Scholar 

  34. Meehan CJ, Goig GA, Kohl TA, Verboven L, Dippenaar A, Ezewudo M, Farhat MR, Guthrie JL, Laukens K, Miotto P, Ofori-Anyinam B, Dreyer V, Supply P, Suresh A, Utpatel C, van Soolingen D, Zhou Y, Ashton PM, Brites D, Cabibbe AM, de Jong BC, de Vos M, Menardo F, Gagneux S, Gao Q, Heupink TH, Liu Q, Loiseau C, Rigouts L, Rodwell TC, Tagliani E, Walker TM, Warren RM, Zhao Y, Zignol M, Schito M, Gardy J, Cirillo DM, Niemann S, Comas I, Van Rie A (2019) Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues. Nat Rev Microbiol 17:533–545. https://doi.org/10.1038/s41579-019-0214-5

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was made possible by the generous support of the Shanghai Municipal Science and Technology Major Project (ZD2021CY001) and National Natural Science Foundation of China (82272376).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Z.Q. and M.L. performed the material preparation, data collection, and data analysis. The first draft of the manuscript was written by Z.Q. and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qian Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, Z., Li, M., Chen, Y. et al. Performance evaluation of core genome multilocus sequence typing for genotyping of Mycobacterium tuberculosis strains in China: based on multicenter, population-based collection. Eur J Clin Microbiol Infect Dis 43, 297–304 (2024). https://doi.org/10.1007/s10096-023-04720-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-023-04720-8

Keywords

Navigation