Skip to main content
Log in

Diagnostic efficacy of an optimized nucleotide MALDI-TOF–MS assay for anti-tuberculosis drug resistance detection

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Purpose

We aimed at evaluating the diagnostic efficacy of a nucleotide matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF–MS) assay to detect drug resistance of Mycobacterium tuberculosis.

Methods

Overall, 263 M. tuberculosis clinical isolates were selected to evaluate the performance of nucleic MALDI-TOF–MS for rifampin (RIF), isoniazid (INH), ethambutol (EMB), moxifloxacin (MXF), streptomycin (SM), and pyrazinamide (PZA) resistance detection. The results for RIF, INH, EMB, and MXF were compared with phenotypic microbroth dilution drug susceptibility testing (DST) and whole-genome sequencing (WGS), and the results for SM and PZA were compared with those obtained by WGS.

Results

Using DST as the gold standard, the sensitivity, specificity, and kappa values of the MALDI-TOF–MS assay for the detection of resistance were 98.2%, 98.7%, and 0.97 for RIF; 92.8%, 99%, and 0.90 for INH; 82.4%, 98.0%, and 0.82 for EMB; and 92.6%, 99.5%, and 0.94 for MXF, respectively. Compared with WGS as the reference standard, the sensitivity, specificity, and kappa values of the MALDI-TOF–MS assay for the detection of resistance were 97.4%, 100.0%, and 0.98 for RIF; 98.7%, 92.9%, and 0.92 for INH; 96.3%, 100.0%, and 0.98 for EMB; 98.1%, 100.0%, and 0.99 for MXF; 98.0%, 100.0%, and 0.98 for SM; and 50.0%, 100.0%, and 0.65 for PZA.

Conclusion

The nucleotide MALDI-TOF–MS assay yielded highly consistent results compared to DST and WGS, suggesting that it is a promising tool for the rapid detection of sensitivity to RIF, INH, EMB, and MXF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. World Health Organization (2022) Global tuberculosis report 2022. Geneva. https://iris.who.int/bitstream/handle/10665/363752/9789240061729-eng.pdf. Accessed 27 Oct 2022

  2. Dheda K, Limberis JD, Pietersen E, Phelan J, Esmail A, Lesosky M, Fennelly KP, Te Riele J, Mastrapa B, Streicher EM, Dolby T, Abdallah AM, Ben-Rached F, Simpson J, Smith L, Gumbo T, van Helden P, Sirgel FA, McNerney R, Theron G, Pain A, Clark TG, Warren RM (2017) Outcomes, infectiousness, and transmission dynamics of patients with extensively drug-resistant tuberculosis and home-discharged patients with programmatically incurable tuberculosis: a prospective cohort study. Lancet Respir Med 5:269–281. https://doi.org/10.1016/S2213-2600(16)30433-7

    Article  PubMed  Google Scholar 

  3. Pradipta IS, Forsman LD, Bruchfeld J, Hak E, Alffenaar JW (2018) Risk factors of multidrug-resistant tuberculosis: a global systematic review and meta-analysis. J Infect 77:469–478. https://doi.org/10.1016/j.jinf.2018.10.004

    Article  PubMed  Google Scholar 

  4. Walzl G, McNerney R, du Plessis N, Bates M, McHugh TD, Chegou NN, Zumla A (2018) Tuberculosis: advances and challenges in development of new diagnostics and biomarkers. Lancet Infect Dis 18:e199–e210. https://doi.org/10.1016/S1473-3099(18)30111-7

    Article  CAS  PubMed  Google Scholar 

  5. Heyckendorf J, Georghiou SB, Frahm N, Heinrich N, Kontsevaya I, Reimann M, Holtzman D, Imperial M, Cirillo DM, Gillespie SH, Ruhwald M, UNITE4TB Consortium (2022) Tuberculosis treatment monitoring and outcome measures New interest and new strategies. Clin Microbiol Rev 35:e0022721. https://doi.org/10.1128/cmr.00227-21

    Article  PubMed  Google Scholar 

  6. Penn-Nicholson A, Georghiou SB, Ciobanu N, Kazi M, Bhalla M, David A, Conradie F, Ruhwald M, Crudu V, Rodrigues C, Myneedu VP, Scott L, Denkinger CM, Schumacher SG (2022) Detection of isoniazid, fluoroquinolone, ethionamide, amikacin, kanamycin, and capreomycin resistance by the Xpert MTB/XDR assay: a cross-sectional multicentre diagnostic accuracy study. Lancet Infect Dis 22:242–249. https://doi.org/10.1016/S1473-3099(21)00452-7

    Article  CAS  PubMed  Google Scholar 

  7. Wang SF, Ou XC, Li Q, Zheng HW, Wang YF, Zhao YL (2016) The Abbott RealTime MTB assay and the Cepheid GeneXpert assay show comparable performance for the detection of Mycobacterium tuberculosis in sputum specimens. Int J Infect Dis 45:78–80. https://doi.org/10.1016/j.ijid.2016.02.024

    Article  CAS  PubMed  Google Scholar 

  8. Nguyen TNA, Anton-Le Berre V, Bañuls AL, Nguyen TVA (2019) Molecular diagnosis of drug-resistant tuberculosis; a literature review. Front Microbiol 10:794. https://doi.org/10.3389/fmicb.2019.00794

    Article  PubMed  PubMed Central  Google Scholar 

  9. Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, Allen J, Tahirli R, Blakemore R, Rustomjee R, Milovic A, Jones M, O’Brien SM, Persing DH, Ruesch-Gerdes S, Gotuzzo E, Rodrigues C, Alland D, Perkins MD (2010) Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363:1005–1015. https://doi.org/10.1056/NEJMoa0907847

    Article  CAS  PubMed Central  Google Scholar 

  10. Allix-Béguec C, Arandjelovic I, Bi L, Beckert P, Bonnet M, Bradley P, Cabibbe AM, Cancino-Muñoz I, Caulfield MJ, Chaiprasert A, Cirillo DM, Clifton DA, Comas I, Crook DW, De Filippo MR, de Neeling H, Diel R, Drobniewski FA, Faksri K, Farhat MR, Fleming J, Fowler P, Fowler TA, Gao Q, Gardy J, Gascoyne-Binzi D, Gibertoni-Cruz AL, Gil-Brusola A, Golubchik T, Gonzalo X, Grandjean L, He G, Guthrie JL, Hoosdally S, Hunt M, Iqbal Z, Ismail N, Johnston J, Khanzada FM, Khor CC, Kohl TA, Kong C, Lipworth S, Liu Q, Maphalala G, Martinez E, Mathys V, Merker M, Miotto P, Mistry N, Moore DAJ, Murray M, Niemann S, Omar SV, Ong RT, Peto TEA, Posey JE, Prammananan T, Pym A, Rodrigues C, Rodrigues M, Rodwell T, Rossolini GM, Sánchez Padilla E, Schito M, Shen X, Shendure J, Sintchenko V, Sloutsky A, Smith EG, Snyder M, Soetaert K, Starks AM, Supply P, Suriyapol P, Tahseen S, Tang P, Teo YY, Thuong TNT, Thwaites G, Tortoli E, van Soolingen D, Walker AS, Walker TM, Wilcox M, Wilson DJ, Wyllie D, Yang Y, Zhang H, Zhao Y, Zhu B (2018) Prediction of susceptibility to first-line tuberculosis drugs by DNA sequencing. N Engl J Med 379:1403–1415. https://doi.org/10.1056/NEJMoa1800474

    Article  PubMed  Google Scholar 

  11. Wu X, Tan G, Yang J, Guo Y, Huang C, Sha W, Yu F (2022) Prediction of Mycobacterium tuberculosis drug resistance by nucleotide MALDI-TOF-MS. Int J Infect Dis 121:47–54. https://doi.org/10.1016/j.ijid.2022.04.061

    Article  CAS  PubMed  Google Scholar 

  12. Yang H, Li A, Dang L, Kang T, Ren F, Ma J, Zhou Y, Yang Y, Lei J, Zhang T (2023) A rapid, accurate, and low-cost method for detecting Mycobacterium tuberculosis and its drug-resistant genes in pulmonary tuberculosis: applications of MassARRAY DNA mass spectrometry. Front Microbiol 14:1093745. https://doi.org/10.3389/fmicb.2023.1093745

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shi J, He G, Ning H, Wu L, Wu Z, Ye X, Qiu C, Jiang X (2022) Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) in the detection of drug resistance of Mycobacterium tuberculosis in re-treated patients. Tuberculosis (Edinb) 135:102209. https://doi.org/10.1016/j.tube.2022.102209

    Article  CAS  PubMed  Google Scholar 

  14. Walker TM, Miotto P, Köser CU, Fowler PW, Knaggs J, Iqbal Z, Hunt M, Chindelevitch L, Farhat M, Cirillo DM, Comas I, Posey J, Omar SV, Peto TE, Suresh A, Uplekar S, Laurent S, Colman RE, Nathanson CM, Zignol M, Walker AS, Crook DW, Ismail N, Rodwell TC (2022) The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis. Lancet Microbe 3:e265–e273. https://doi.org/10.1016/S2666-5247(21)00301-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. He W, Tan Y, Liu C, Wang Y, He P, Song Z, Liu D, Zheng H, Ma A, Zhao B, Ou X, Xia H, Wang S, Zhao Y (2022) Drug-resistant characteristics, genetic diversity, and transmission dynamics of rifampicin-resistant Mycobacterium tuberculosis in Hunan, China, revealed by whole-genome sequencing. Microbiol Spectr 10:e0154321. https://doi.org/10.1128/spectrum.01543-21

    Article  PubMed  Google Scholar 

  16. Tang W, Hu J, Zhang H, Wu P, He H (2015) Kappa coefficient: a popular measure of rater agreement. Shanghai Arch Psychiatry 27:62–67. https://doi.org/10.11919/j.issn.1002-0829.215010

    Article  PubMed  PubMed Central  Google Scholar 

  17. Coscolla M, Gagneux S (2014) Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol 26:431–444. https://doi.org/10.1016/j.smim.2014.09.012

    Article  CAS  PubMed Central  Google Scholar 

  18. Xia H, Song Y, Zheng Y, Wang S, Zhao B, He W, Liu D, Ou X, Zhou Y, Zhao Y (2022) Detection of Mycobacterium tuberculosis rifampicin resistance conferred by borderline rpoB mutations: Xpert MTB/RIF is superior to phenotypic drug susceptibility testing. Infect Drug Resist 15:1345–1352. https://doi.org/10.2147/IDR.S358301

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu D, Huang F, Zhang G, He W, Ou X, He P, Zhao B, Zhu B, Liu F, Li Z, Liu C, Xia H, Wang S, Zhou Y, Walker TM, Liu L, Crook DW, Zhao Y (2021) Whole-genome sequencing for surveillance of tuberculosis drug resistance and determination of resistance level in China. Clin Microbiol Infect 28:731.e9-731.e15. https://doi.org/10.1016/j.cmi.2021.09.014

    Article  CAS  PubMed  Google Scholar 

  20. Alame Emane AK, Guo X, Takiff HE, Liu S (2021) Drug resistance, fitness and compensatory mutations in Mycobacterium tuberculosis. Tuberculosis (Edinb) 129:102091. https://doi.org/10.1016/j.tube.2021.102091

    Article  CAS  Google Scholar 

  21. Napier G, Campino S, Phelan JE, Clark TG (2023) Large-scale genomic analysis of Mycobacterium tuberculosis reveals extent of target and compensatory mutations linked to multi-drug resistant tuberculosis. Sci Rep 13:623. https://doi.org/10.1038/s41598-023-27516-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhdanova S, Jiao W-W, Sinkov V, Khromova P, Solovieva N, Mushkin A, Mokrousov I, Belopolskaya O, Masharsky A, Vyazovaya A, Rychkova L, Kolesnikova L, Zhuravlev V, Shen AD, Ogarkov O (2023) Insight into population structure and drug resistance of pediatric tuberculosis strains from China and Russia gained through whole-genome sequencing. Int J Mol Sci 24:10302. https://doi.org/10.3390/ijms241210302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li B, Zhu C, Sun L, Dong H, Sun Y, Cao S, Zhen L, Qi Q, Zhang Q, Mo T, Wang H, Qiu M, Song C, Cai Q (2022) Performance evaluation and clinical validation of optimized nucleotide MALDI-TOF-MS for mycobacterial identification. Front Cell Infect Microbiol 12:1079184. https://doi.org/10.3389/fcimb.2022.1079184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ceyssens PJ, Soetaert K, Timke M, Van den Bossche A, Sparbier K, De Cremer K, Kostrzewa M, Hendrickx M, Mathys V (2017) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for combined species identification and drug sensitivity testing in Mycobacteria. J Clin Microbiol 55:624–634. https://doi.org/10.1128/JCM.02089-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Theron G, Peter J, Richardson M, Barnard M, Donegan S, Warren R, Steingart KR, Dheda K (2014) The diagnostic accuracy of the GenoType(®) MTBDRsl assay for the detection of resistance to second-line anti-tuberculosis drugs. Cochrane Database Syst Rev 10:Cd010705. https://doi.org/10.1002/14651858.CD010705.pub2

    Article  Google Scholar 

  26. Truden S, Sodja E, Žolnir-Dovč M (2023) Drug-resistant tuberculosis on the Balkan Peninsula: determination of drug resistance mechanisms with Xpert MTB/XDR and whole-genome sequencing analysis. Microbiol Spectr 11:e0276122. https://doi.org/10.1128/spectrum.02761-22

    Article  CAS  PubMed  Google Scholar 

  27. Chen Y, Ji L, Liu Q, Li J, Hong C, Jiang Q, Gan M, Takiff HE, Yu W, Tan W, Gao Q (2021) Lesion heterogeneity and long-term heteroresistance in multidrug-resistant tuberculosis. J Infect Dis 224:889–893. https://doi.org/10.1093/infdis/jiab011

    Article  CAS  PubMed  Google Scholar 

  28. Fan XY, Hu ZY, Xu FH, Yan ZQ, Guo SQ, Li ZM (2003) Rapid detection of rpoB gene mutations in rifampin-resistant Mycobacterium tuberculosis isolates in Shanghai by using the amplification refractory mutation system. J Clin Microbiol 41:993–997. https://doi.org/10.1128/JCM.41.3.993-997.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Huimin Guo and Tao Kang for assisting the nucleotide MALDI-TOF-MS experiments and result interpretation.

Funding

This research was funded by the National Key R&D Program of China (2022YFC2305204), China CDC-Tuberculosis Control and Prevention Project (232811), and Science and technology plan project of Zhejiang Province (2023C03102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanlin Zhao.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, X., Song, Z., Zhao, B. et al. Diagnostic efficacy of an optimized nucleotide MALDI-TOF–MS assay for anti-tuberculosis drug resistance detection. Eur J Clin Microbiol Infect Dis 43, 105–114 (2024). https://doi.org/10.1007/s10096-023-04700-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-023-04700-y

Keywords

Navigation