Skip to main content

Advertisement

Log in

The impact of COVID on bacterial sepsis

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Purpose

To identify the predictors of morbidity and mortality in matched COVID-19 positive and negative patients who were septic with Gram positive or Gram negative infections.

Methods

We conducted a retrospective review, from March to October 2020, of matched septic patients at five Hackensack Meridian Health hospitals who had bacteremia with Staphylococcus aureus, Klebsiella pneumoniae or Escherichia coli with and without COVID-19. We extracted patient demographics, comorbidities and clinical outcomes data using ICD-10 codes. Bacterial isolates were compared by whole genome sequencing analysis. Multivariate logistic regression was used to analyze independent predictors of morbidity and mortality.

Results

A total of 208 patients were grouped by positive bloodstream infection (BSI) with COVID-19 (n = 104) and without COVID-19 (n = 104). Most patients were over age 50 (90% vs. 89%) and Caucasian (78% vs. 86%). Inpatient mortality was higher in patients with COVID-19 for both GP (35% vs. 8%, p < 0.05) and GN (28% vs. 10%, p < 0.05) BSIs. Patients with Gram positive (GP) BSIs had a significant increase in mortality risk (OR 4.5, CI 1.4–14.5, p < 0.05) in contrast to those with Gram negative (GN) infections (OR 0.4, CI 0.4–4.0, p = 0.4).

Conclusion

Concurrent COVID-19 infection is associated with a significant increase in morbidity and mortality in patients with GP and GN BSIs. Patients with S. aureus BSIs with COVID-19 are more likely to develop shock and respiratory failure and have higher rates and odds of mortality than those without COVID-19. These findings provide an essential insight into the care of these patients, especially those co-infected with Staphylococcus aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets in this paper will be made available from the corresponding authors upon requests.

References

  1. WHO Coronavirus (COVID-19) Dashboard. World Health Organization https://covid19.who.int/

  2. Bonazzetti C, Morena V, Giacomelli A et al (2021) Unexpectedly high frequency of enterococcal bloodstream infections in coronavirus disease 2019 patients admitted to an Italian ICU: an observational study. Crit Care Med 49(1):e31–e40. https://doi.org/10.1097/CCM.0000000000004748

    Article  CAS  PubMed  Google Scholar 

  3. Puzniak L, Finelli L, Yu KC et al (2021) A multicenter analysis of the clinical microbiology and antimicrobial usage in hospitalized patients in the US with or without COVID-19. BMC Infect Dis 21(1):227. https://doi.org/10.1186/s12879-021-05877-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bhatt PJ, Shiau S, Brunetti L et al (2021) Risk factors and outcomes of hospitalized patients with severe coronavirus disease 2019 (COVID-19) and secondary bloodstream infections: a multicenter case-control study. Clin Infect Dis Off Publ Infect Dis Soc Am 72(12):e995–e1003. https://doi.org/10.1093/cid/ciaa1748

    Article  CAS  Google Scholar 

  5. Adalbert JR, Varshney K, Tobin R, Pajaro R (2021) Clinical outcomes in patients co-infected with COVID-19 and Staphylococcus aureus: a scoping review. BMC Infect Dis 21(1):985. https://doi.org/10.1186/s12879-021-06616-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nori P, Cowman K, Chen V et al (2021) Bacterial and fungal coinfections in COVID-19 patients hospitalized during the New York City pandemic surge. Infect Control Hosp Epidemiol 42(1):84–88. https://doi.org/10.1017/ice.2020.368

    Article  CAS  PubMed  Google Scholar 

  7. Goto M, Al-Hasan MN (2013) Overall burden of bloodstream infection and nosocomial bloodstream infection in North America and Europe. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 19(6):501–509. https://doi.org/10.1111/1469-0691.12195

    Article  CAS  Google Scholar 

  8. Viscoli C (2016) Bloodstream Infections: the peak of the iceberg. Virulence 7(3):248–251. https://doi.org/10.1080/21505594.2016.1152440

    Article  PubMed  PubMed Central  Google Scholar 

  9. Giacobbe DR, Battaglini D, Ball L et al (2020) Bloodstream infections in critically ill patients with COVID-19. Eur J Clin Invest 50(10):e13319. https://doi.org/10.1111/eci.13319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma Oxf Engl 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  Google Scholar 

  11. Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol J Comput Mol Cell Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  Google Scholar 

  12. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinforma Oxf Engl 29(8):1072–1075. https://doi.org/10.1093/bioinformatics/btt086

    Article  CAS  Google Scholar 

  13. Seemann T. mlst Github https://github.com/tseemann/mlst

  14. Jolley KA, Maiden MC (2010) BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11(1):595. https://doi.org/10.1186/1471-2105-11-595

    Article  PubMed  PubMed Central  Google Scholar 

  15. Feldgarden M, Brover V, Haft DH et al (2019) Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob Agents Chemother. 63(11). https://doi.org/10.1128/AAC.00483-19

  16. Zankari E, Hasman H, Cosentino S et al (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67(11):2640–2644. https://doi.org/10.1093/jac/dks261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seemann T. Snippy. https://github.com/tseemann/snippy

  18. Arndt D, Grant JR, Marcu A et al (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44(W1):W16-21. https://doi.org/10.1093/nar/gkw387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kurtz S, Phillippy A, Delcher AL et al (2004) Versatile and open software for comparing large genomes. Genome Biol 5(2):R12. https://doi.org/10.1186/gb-2004-5-2-r12

    Article  PubMed  PubMed Central  Google Scholar 

  20. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M (2006) ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34(Database issue):D32-36. https://doi.org/10.1093/nar/gkj014

    Article  CAS  PubMed  Google Scholar 

  21. Croucher NJ, Page AJ, Connor TR et al (2015) Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 43(3):e15. https://doi.org/10.1093/nar/gku1196

    Article  CAS  PubMed  Google Scholar 

  22. Seemann T. snp-dists. https://github.com/tseemann/snp-dists

  23. Pitout JDD, DeVinney R (2017) Escherichia coli ST131: a multidrug-resistant clone primed for global domination. F1000Research 6:F1000 Faculty Rev-195. https://doi.org/10.12688/f1000research.10609.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Challagundla L, Luo X, Tickler IA et al (2018) Range Expansion and the Origin of USA300 North American Epidemic Methicillin-Resistant Staphylococcus aureus. mBio 9(1). https://doi.org/10.1128/mBio.02016-17

  25. Kourtis AP, Hatfield K, Baggs J et al (2019) Vital signs: epidemiology and recent trends in methicillin-resistant and in methicillin-susceptible staphylococcus aureus bloodstream infections - United States. MMWR Morb Mortal Wkly Rep 68(9):214–219. https://doi.org/10.15585/mmwr.mm6809e1

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cusumano JA, Dupper AC, Malik Y et al (2020) Staphylococcus aureus bacteremia in patients infected with COVID-19: a case series. Open Forum Infect Dis 7(11):ofaa518. https://doi.org/10.1093/ofid/ofaa518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yap FHY, Gomersall CD, Fung KSC et al (2004) Increase in methicillin-resistant Staphylococcus aureus acquisition rate and change in pathogen pattern associated with an outbreak of severe acute respiratory syndrome. Clin Infect Dis Off Publ Infect Dis Soc Am 39(4):511–516. https://doi.org/10.1086/422641

    Article  Google Scholar 

  28. Morens DM, Taubenberger JK, Fauci AS (2008) Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis 198(7):962–970. https://doi.org/10.1086/591708

    Article  PubMed  Google Scholar 

  29. Leung CH, Tseng HK, Wang WS, Chiang HT, Wu AYJ, Liu CP (2014) Clinical characteristics of children and adults hospitalized for influenza virus infection. J Microbiol Immunol Infect Wei Mian Yu Gan Ran Za Zhi 47(6):518–525. https://doi.org/10.1016/j.jmii.2013.06.002

    Article  PubMed  Google Scholar 

  30. Lew TWK, Kwek TK, Tai D et al (2003) Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome. JAMA 290(3):374–380. https://doi.org/10.1001/jama.290.3.374

    Article  PubMed  Google Scholar 

  31. Shi H, Han X, Jiang N et al (2020) Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 20(4):425–434. https://doi.org/10.1016/S1473-3099(20)30086-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mehta AA, Haridas N, Belgundi P, Jose WM (2021) A systematic review of clinical and laboratory parameters associated with increased severity among COVID-19 patients. Diabetes Metab Syndr 15(2):535–541. https://doi.org/10.1016/j.dsx.2021.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qin C, Zhou L, Hu Z et al (2020) Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis Off Publ Infect Dis Soc Am 71(15):762–768. https://doi.org/10.1093/cid/ciaa248

    Article  CAS  Google Scholar 

  34. Ripa M, Galli L, Poli A et al (2021) Secondary infections in patients hospitalized with COVID-19: incidence and predictive factors. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 27(3):451–457. https://doi.org/10.1016/j.cmi.2020.10.021

    Article  CAS  Google Scholar 

  35. Diao B, Wang C, Tan Y et al (2020) Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol 11:827. https://doi.org/10.3389/fimmu.2020.00827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dupper AC, Malik Y, Cusumano JA et al (2022) Longer steroid treatment increases secondary bloodstream infection risk among patients with COVID-19 requiring intensive care. Infect Dis Clin Pract 30(4). https://journals.lww.com/infectdis/Fulltext/2022/07000/Longer_Steroid_Treatment_Increases_Secondary.7.aspx

  37. Campochiaro C, Della-Torre E, Cavalli G et al (2020) Efficacy and safety of tocilizumab in severe COVID-19 patients: a single-centre retrospective cohort study. Eur J Intern Med 76:43–49. https://doi.org/10.1016/j.ejim.2020.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bengoechea JA, Bamford CG (2020) SARS-CoV-2, bacterial co-infections, and AMR: the deadly trio in COVID-19? EMBO Mol Med 12(7):e12560. https://doi.org/10.15252/emmm.202012560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the effort of the Microbiology Laboratory at Jersey Shore University Medical Center in supporting this study.

Funding

This work was funded by Merck’s Investigator Studies Program (MISP) SARS CoV-2/COVID-19 award MISP 60453 to B.N.K. and M.K. (“Drug resistance profiles of bacterial and fungal isolates from super-infections in hospitalized COVID-19 patients”).

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author (B. Kreiswirth) and Drs. Rojtman and Kordalewska were involved in the research design, overseeing the study and editing the manuscript. The two co-first authors (Dar and Erickson) collected and analyzed the data in collaboration with Dr. Manca and prepared the initial draft of the manuscript. Dr. Lozy provided guidance in the statistical analysis. The other authors generated the laboratory data including the preparation, sequencing, and analysis of the strains.

Corresponding author

Correspondence to Barry N. Kreiswirth.

Ethics declarations

Ethics approval

This study was approved on 11/1/2021 by Hackensack Meridian Health Institutional Review Board (IRB) under protocol Pro2021-0519.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sophia Dar and Daniel Erickson are co-first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar, S., Erickson, D., Manca, C. et al. The impact of COVID on bacterial sepsis. Eur J Clin Microbiol Infect Dis 42, 1173–1181 (2023). https://doi.org/10.1007/s10096-023-04655-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-023-04655-0

Keywords

Navigation