Skip to main content
Log in

Phenotypic and genomic characteristics of oxacillin-susceptible mecA-positive Staphylococcus aureus, rapid selection of high-level resistance to beta-lactams

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The aim of this study is to describe the phenotypic and genetic properties of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) isolates and their beta-lactam resistant derivatives obtained after selection with oxacillin. A collection of hospital- (HA-) and community-acquired (CA-) MRSA was screened for oxacillin susceptibility. Antibiotic susceptibility testing, population analysis profile (PAP), mecA expression analysis, and whole genome sequencing (WGS) were performed for 60 mecA-positive OS-MRSA isolates. Twelve high-level beta-lactam resistant derivatives selected during PAP were also subjected to WGS. OS-MRSA were more prevalent among CA-MRSA (49/205, 24%) than among HA-MRSA (11/575, 2%). OS-MRSA isolates belonged to twelve sequence types (ST), with a predominance of ST22-t223-SCCmec IVc and ST59-t1950-SCCmec V lineages. OS-MRSA were characterized by mecA promoter mutations at − 33 (C→T) or − 7 (G→T/A) along with PBP2a substitutions (S225R or E246G). The basal and oxacillin-induced levels of mecA expression in OS-MRSA isolates were significantly lower than those in control ST8-HA-MRSA isolates. Most of the OS-MRSA isolates were heteroresistant to oxacillin. High-level beta-lactam resistant OS-MRSA derivatives selected with oxacillin carried mutations in mecA auxiliary factors: relA (metabolism of purines), tyrS, cysS (metabolism of tRNAs), aroK, cysE (metabolism of amino acids and glycolysis). Cefoxitin-based tests demonstrated high specificity for OS-MRSA detection. The highest positive predictive values (PPV > 0.95) were observed for broth microdilution, the VITEK® 2 automatic system, and chromogenic media. Susceptibility testing of CA-MRSA requires special attention due to the high prevalence of difficult-to-detect OS-MRSA among them. Mis-prescription of beta-lactams for the treatment of OS-MRSA may lead to selection of high-level resistance and treatment failures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Genomic data have been deposited in the NCBI Sequence Read Archive (SRA), under BioProject PRJNA872007.

References

  1. Hiramatsu K, Kihara H, Yokota T (1992) Analysis of borderline-resistant strains of methicillin-resistant Staphylococcus aureus using polymerase chain reaction. Microbiol Immunol 36(5):445–453

    Article  CAS  PubMed  Google Scholar 

  2. Hososaka Y, Hanaki H, Endo H, Suzuki Y, Nagasawa Z, Otsuka Y, Nakae T, Sunakawa K (2007) Characterization of oxacillin-susceptible mecA-positive Staphylococcus aureus: a new type of MRSA. J Infect Chemother 13(2):79–86

    Article  CAS  PubMed  Google Scholar 

  3. Gargis AS, Yoo BB, Lonsway DR, Anderson K, Campbell D, Ewing TO, Lawsin A, Machado MJ, Yamamoto N, Halpin AL, Lutgring JD, Karlsson M, Rasheed JK, Elkins CA (2020) Difficult-to-detect Staphylococcus aureus: mecA-positive isolates associated with Oxacillin and Cefoxitin false-susceptible results. J Clin Microbiol 58(4):10–1128

  4. Duarte FC, Danelli T, Tavares ER, Morguette AEB, Kerbauy G, Grion CMC, Yamauchi LM, Perugini MRE, Yamada-Ogatta SF (2019) Fatal sepsis caused by mecA-positive oxacillin-susceptible Staphylococcus aureus: first report in a tertiary hospital of southern Brazil. J Infect Chemother 25(4):293–297

    Article  PubMed  Google Scholar 

  5. Goering RV, Swartzendruber EA, Obradovich AE, Tickler IA, Tenover FC (2019) Emergence of Oxacillin resistance in stealth Methicillin-resistant Staphylococcus aureus due to mecA sequence instability. Antimicrob Agents Chemother 63(8):10–1128

  6. Sharff KA, Monecke S, Slaughter S, Forrest G, Pfeiffer C, Ehricht R, Oethinger M (2012) Genotypic resistance testing creates new treatment challenges: two cases of oxacillin-susceptible methicillin-resistant Staphylococcus aureus. J Clin Microbiol 50(12):4151–4153

    Article  PubMed  PubMed Central  Google Scholar 

  7. Andrade-Figueiredo M, Leal-Balbino TC (2016) Clonal diversity and epidemiological characteristics of Staphylococcus aureus: high prevalence of oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) associated with clinical isolates in Brazil. BMC Microbiol 16(1):115

    Article  PubMed  PubMed Central  Google Scholar 

  8. Saeed K, Dryden M, Parnaby R (2010) Oxacillin-susceptible MRSA, the emerging MRSA clone in the UK? J Hosp Infect 76(3):267–268

    Article  CAS  PubMed  Google Scholar 

  9. Saeed K, Ahmad N, Dryden M, Cortes N, Marsh P, Sitjar A, Wyllie S, Bourne S, Hemming J, Jeppesen C, Green S (2014) Oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA), a hidden resistant mechanism among clinically significant isolates in the Wessex region/UK. Infection 42(5):843–847

    Article  CAS  PubMed  Google Scholar 

  10. Ikonomidis A, Michail G, Vasdeki A, Labrou M, Karavasilis V, Stathopoulos C, Maniatis AN, Pournaras S (2008) In vitro and in vivo evaluations of oxacillin efficiency against mecA-positive oxacillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother 52(11):3905–3908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Witte W, Pasemann B, Cuny C (2007) Detection of low-level oxacillin resistance in mecA-positive Staphylococcus aureus. Clin Microbiol Infect 13(4):408–412

    Article  CAS  PubMed  Google Scholar 

  12. Conceicao T, Coelho C, de Lencastre H, Aires-de-Sousa M (2015) Frequent occurrence of oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) strains in two African countries. J Antimicrob Chemother 70(12):3200–3204

    CAS  PubMed  Google Scholar 

  13. Zeinalpour Ahrabi S, Rahbarnia L, Dehnad A, Naghili B, Ghaffari Agdam MH, Nazari A (2019) Incidence of Oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) isolates and TSST-1 virulence factor among high school students in Tabriz. Northwest Iran 14(4):e85341

    Google Scholar 

  14. Mistry H, Sharma P, Mahato S, Saravanan R, Kumar PA, Bhandari V (2016) Prevalence and characterization of Oxacillin susceptible mecA-positive clinical isolates of Staphylococcus aureus causing bovine mastitis in India. PLoS One 11(9):e0162256

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu JL, Li TM, Zhong N, Wang X, Jiang J, Zhang WX, Tang R, Guo YJ, Liu Y, Hu J, He LH, Tang J, Wu WJ, Li M (2021) Current status of oxacillin-susceptible mecA-positive Staphylococcus aureus infection in Shanghai, China: A multicenter study. J Microbiol Immunol Infect 54(6):1070–1077

    Article  CAS  PubMed  Google Scholar 

  16. Ma M, Chu M, Tao L, Li J, Li X, Huang H, Qu K, Wang H, Li L, Du T (2021) First report of Oxacillin susceptible mecA-positive Staphylococcus aureus in a Children's Hospital in Kunming, China. Infect Drug Resist 14:2597–2606

    Article  PubMed  PubMed Central  Google Scholar 

  17. Song Y, Cui L, Lv Y, Li Y, Xue F (2017) Characterisation of clinical isolates of oxacillin-susceptible mecA-positive Staphylococcus aureus in China from 2009 to 2014. J Glob Antimicrob Resist 11:1–3

    Article  PubMed  Google Scholar 

  18. Fabri FV, Pinto NB, Mattos MSF, Rodrigues RF, Shinohara DR, Pereira PM, Nishiyama SAB, Tognim MCB (2021) First report of oxacillin-susceptible mecA-positive Staphylococcus aureus in healthy dogs and their owners in southern Brazil. Prev Vet Med 189:105286

    Article  PubMed  Google Scholar 

  19. Pu W, Su Y, Li J, Li C, Yang Z, Deng H, Ni C (2014) High incidence of oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) associated with bovine mastitis in China. PLoS One 9(2):e88134

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang P, Miao X, Zhou L, Cui B, Zhang J, Xu X, Wu C, Peng X, Wang X (2020) Characterization of Oxacillin-susceptible mecA-positive Staphylococcus aureus from food poisoning outbreaks and retail foods in China. Foodborne Pathog Dis 17(11):728–734

    Article  CAS  PubMed  Google Scholar 

  21. Luo R, Zhao L, Du P, Luo H, Ren X, Lu P, Cui S, Luo Y (2020) Characterization of an Oxacillin-susceptible mecA-positive Staphylococcus aureus isolate from an imported meat product. Microb Drug Resist 26(2):89–93

    Article  CAS  PubMed  Google Scholar 

  22. Quijada NM, Hernandez M, Oniciuc EA, Eiros JM, Fernandez-Natal I, Wagner M, Rodriguez-Lazaro D (2019) Oxacillin-susceptible mecA-positive Staphylococcus aureus associated with processed food in Europe. Food Microbiol 82:107–110

    Article  CAS  PubMed  Google Scholar 

  23. Miragaia M (2018) Factors contributing to the evolution of mecA-mediated beta-lactam resistance in Staphylococci: update and new insights from whole genome sequencing (WGS). Front Microbiol 9:2723

    Article  PubMed  PubMed Central  Google Scholar 

  24. Harrison EM, Ba X, Coll F, Blane B, Restif O, Carvell H, Koser CU, Jamrozy D, Reuter S, Lovering A, Gleadall N, Bellis KL, Uhlemann AC, Lowy FD, Massey RC, Grilo IR, Sobral R, Larsen J, Rhod Larsen A et al (2019) Genomic identification of cryptic susceptibility to penicillins and beta-lactamase inhibitors in methicillin-resistant Staphylococcus aureus. Nat Microbiol 4(10):1680–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liang B, Xiong Z, Liang Z, Zhang C, Cai H, Long Y, Gao F, Wang J, Deng Q, Zhong H, Xie Y, Huang L, Gong S, Zhou Z (2022) Genomic basis of occurrence of cryptic resistance among Oxacillin- and Cefoxitin-susceptible mecA-positive Staphylococcus aureus. Microbiol Spectr 10(3):e0029122

    Article  PubMed  Google Scholar 

  26. Liu P, Xue H, Wu Z, Ma J, Zhao X (2016) Effect of bla regulators on the susceptible phenotype and phenotypic conversion for oxacillin-susceptible mecA-positive staphylococcal isolates. J Antimicrob Chemother 71(8):2105–2112

    Article  PubMed  Google Scholar 

  27. Jian Y, Li T, Zhao L, Zhao N, Liu Y, Lv H, Wang Y, Liu Q, Li M (2022) Regulation of bla system in ST59-related oxacillin-susceptible mecA-positive Staphylococcus aureus. J Antimicrob Chemother 77(3):604–614

    Article  CAS  PubMed  Google Scholar 

  28. Bilyk BL, Panchal VV, Tinajero-Trejo M, Hobbs JK, Foster SJ (2022) An interplay of multiple positive and negative factors governs Methicillin resistance in Staphylococcus aureus. Microbiol Mol Biol Rev 86(2):e0015921

    Article  PubMed  Google Scholar 

  29. Boonsiri T, Watanabe S, Tan XE, Thitiananpakorn K, Narimatsu R, Sasaki K, Takenouchi R, Sato'o Y, Aiba Y, Kiga K, Sasahara T, Taki Y, Li FY, Zhang Y, Azam AH, Kawaguchi T, Cui L (2020) Identification and characterization of mutations responsible for the beta-lactam resistance in oxacillin-susceptible mecA-positive Staphylococcus aureus. Sci Rep 10(1):16907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ba X, Harrison EM, Lovering AL, Gleadall N, Zadoks R, Parkhill J, Peacock SJ, Holden MT, Paterson GK, Holmes MA (2015) Old drugs to treat resistant bugs: Methicillin-resistant Staphylococcus aureus isolates with mecC are susceptible to a combination of Penicillin and Clavulanic acid. Antimicrob Agents Chemother 59(12):7396–7404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gostev V, Ivanova K, Kruglov A, Kalinogorskaya O, Ryabchenko I, Zyryanov S, Kalisnikova E, Likholetova D, Lobzin Y, Sidorenko S (2021) Comparative genome analysis of global and Russian strains of community-acquired methicillin-resistant Staphylococcus aureus ST22, a 'Gaza clone'. Int J Antimicrob Agents 57(2):106264

    Article  CAS  PubMed  Google Scholar 

  32. Pfeltz RF, Schmidt JL, Wilkinson BJ (2001) A microdilution plating method for population analysis of antibiotic-resistant staphylococci. Microb Drug Resist 7(3):289–295

    Article  CAS  PubMed  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  34. Chen FJ, Wang CH, Chen CY, Hsu YC, Wang KT (2014) Role of the mecA gene in oxacillin resistance in a Staphylococcus aureus clinical strain with a pvl-positive ST59 genetic background. Antimicrob Agents Chemother 58(2):1047–1054

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ba X, Raisen CL, Zhou ZC, Harrison EM, Peacock SJ, Holmes MA (2022) Simultaneously screening for methicillin-resistant Staphylococcus aureus and its susceptibility to potentiated penicillins. J Med Microbiol 71(7). https://doi.org/10.1099/jmm.0.001562

  36. Guignard B, Entenza JM, Moreillon P (2005) Beta-lactams against methicillin-resistant Staphylococcus aureus. Curr Opin Pharmacol 5(5):479–489

    Article  CAS  PubMed  Google Scholar 

  37. Chang Q, Abuelaish I, Biber A, Jaber H, Callendrello A, Andam CP, Regev-Yochay G, Hanage WP, Group PS (2018) Genomic epidemiology of meticillin-resistant Staphylococcus aureus ST22 widespread in communities of the Gaza Strip, 2009. Euro Surveill 23(34):1700592

  38. Dordel J, Kim C, Chung M, Pardos de la Gandara M, Holden MT, Parkhill J, de Lencastre H, Bentley SD, Tomasz A (2014) Novel determinants of antibiotic resistance: identification of mutated loci in highly methicillin-resistant subpopulations of methicillin-resistant Staphylococcus aureus. mBio 5(2):e01000

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pardos de la Gandara M, Borges V, Chung M, Milheirico C, Gomes JP, de Lencastre H, Tomasz A (2018) Genetic determinants of high-level Oxacillin resistance in Methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 62(6):10–1128

  40. Mwangi MM, Kim C, Chung M, Tsai J, Vijayadamodar G, Benitez M, Jarvie TP, Du L, Tomasz A (2013) Whole-genome sequencing reveals a link between beta-lactam resistance and synthetases of the alarmone (p)ppGpp in Staphylococcus aureus. Microb Drug Resist 19(3):153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Genomic, phenotypic, and bioinformatic analysis was funded by the Russian Science Foundation (grant no. 18-75-10114-P). Gene expression experiments was supported by the project ID 94030690 of the St. Petersburg State University, St. Petersburg, Russia.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation and design: Vladimir Gostev, Sergey Sidorenko and Julia Sopova. Material preparation, data collection and analysis were performed by Olga Kalinogorskaya, Ofeliia Sulian, Polina Chulkova, Lavrentii Danilov, Lyudmila Kraeva, Dmitrii Polev and Elvira Martens. Genome editing: Ksenia Sabinova, Maria Velizhanina and Julia Sopova. Bioinformatics: Polina Pavlova.The first draft of the manuscript was written by Vladimir Gostev and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sergey Sidorenko.

Ethics declarations

Ethics approval

Not required.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

Supplementary Table S1. Sequence of primers and probes for the mecA expression assay. (DOCX 13 kb)

ESM 2

Supplementary Table S2. Phenotypes and genotypes of OS-MRSA. (XLSX 43 kb)

ESM 3

Supplementary Table S3. Annotation of the mutations in OS-MRSA derivatives. (XLSX 11 kb)

ESM 4

Supplementary Table S4. MICs and growth rate comparison in OS-MRSA and its derivatives. (XLSX 17 kb)

ESM 5

Supplementary Figure S1. Phylogenetic analysis of mecA-positive oxacillin-susceptible S. aureus. (PNG 723 kb)

ESM 6

Supplementary Figure S2. mecA expression assay data. (PNG 495 kb)

ESM 7

Supplementary Figure S3. Influence of SNPs in the mecA promoter on PAP-AUC data. (PNG 852 kb)

ESM 8

Supplementary Figure S4. mecA expression assay data for parental and derivative isolates. (PNG 700 kb)

ESM 9

Supplementary Figure S5. Correlation analysis of different antibiotic susceptibility tests. (PNG 1655 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gostev, V., Sabinova, K., Sopova, J. et al. Phenotypic and genomic characteristics of oxacillin-susceptible mecA-positive Staphylococcus aureus, rapid selection of high-level resistance to beta-lactams. Eur J Clin Microbiol Infect Dis 42, 1125–1133 (2023). https://doi.org/10.1007/s10096-023-04646-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-023-04646-1

Keywords

Navigation