Skip to main content

Advertisement

Log in

High carriage rate of extended‐spectrum β‐lactamase Enterobacterales and diarrheagenic Escherichia coli in healthy donor screening for fecal microbiota transplantation

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The safety of fecal microbiota transplantation (FMT) has been highlighted by extended-spectrum β-lactamase (ESBL)-producing Escherichia coli bacteremia transmitted from donors and acquisition of diarrheagenic E. coli (Shiga toxin-producing E. coli (STEC) and enteropathogenic E. coli (EPEC)) via FMT. The use of donor screening criteria to lower the risk of pathogen transmission via FMT is essential. This study aimed to demonstrate the outcomes of our strict donor screening program. This study was conducted at our FMT center between January 2019 and June 2022. Our donor screening program included an initial questionnaire and subsequent blood and stool testing. We further used selective culture for third-generation cephalosporin-resistant (3GCR) Enterobacterales and multiplex PCR to detect diarrheagenic E. coli in stools. The resistance mechanisms and sequence type of 3GCR Enterobacterales were determined. A total of 742 individuals were assessed, and 583 participants (78.6%) were excluded after questionnaire. Of the remaining 159 participants undergoing stool and blood tests, 37 participants were finally qualified (5.0%, 37/742). A high fecal carriage rate of ESBL-producing Enterobacterales (35.2%, 56/159), including E. coli (n=53) and Klebsiella pneumoniae (n=5), and diarrheagenic E. coli (31.4%, 50/159), including EPEC (n=41), enteroaggregative E. coli (n=11), enterotoxigenic E. coli (n=4), and STEC (n=1), was noted. CTX-M-79 and CTX-M-15 were dominant in E. coli and K. pneumoniae, respectively. The sequence types of the ESBL-producing strains were diverse. The screening for 3GCR Enterobacterales and diarrheagenic E. coli in stool is necessary. Our findings also support the effectiveness of multiplex PCR panels in FMT donor screening programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Hvas CL, Dahl Jørgensen SM, Jørgensen SP et al (2019) Fecal microbiota transplantation is superior to fidaxomicin for treatment of recurrent Clostridium difficile infection. Gastroenterology 156:1324–32.e3

    Article  PubMed  Google Scholar 

  2. van Prehn J, Reigadas E, Vogelzang EH et al (2021) European Society of Clinical Microbiology and Infectious Diseases: 2021 update on the treatment guidance document for Clostridioides difficile infection in adults. Clin Microbiol Infect 27(Suppl 2):S1–S21

    Article  PubMed  Google Scholar 

  3. Bakken JS, Borody T, Brandt LJ et al (2011) Treating Clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol 9(12):1044–9

    Article  PubMed  PubMed Central  Google Scholar 

  4. DeFilipp Z, Bloom PP, Torres Soto M et al (2019) Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N Engl J Med 381:2043–2050

    Article  PubMed  Google Scholar 

  5. Zellmer C, Sater MRA, Huntley MH et al (2021) Shiga toxin-producing E. coli transmission via fecal microbiota transplant. Clin Infect Dis 72:e876–e880

    Article  CAS  PubMed  Google Scholar 

  6. OpenBiome. OpenBiome announces enhanced donor screening protocols following FDA alert. March 13, 2020. https://www.openbiome.org/press-releases/2020/3/12/openbiome-announces-enhanced-donor-screening-protocols-following-fda-alert. Accessed 7 December 2022

  7. US Food and Drug Administration. Important safety alert regarding use of fecal microbiota for transplantation and risk of serious adverse reactions due to transmission of multi-drug resistant organisms. June 13, 2019. https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/important-safety-alert-regarding-use-fecal-microbiota-transplantation-and-risk-serious-adverse. Accessed 7 December 2022

  8. US Food and Drug Administration. Information pertaining to additional safety protections regarding use of fecal microbiota for transplantation - testing of stool donors for enteropathogenic Escherichia coli and Shigatoxin-producing Escherichia coli. April 6, 2020. https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/information-pertaining-additional-safety-protections-regarding-use-fecal-microbiota-transplantation-0. Accessed 7 December 2022

  9. Lin TC, Hung YP, Ko WC et al (2019) Fecal microbiota transplantation for Clostridium difficile infection in Taiwan: establishment and implementation. J Microbiol Immunol Infect 52:841–50

    Article  CAS  PubMed  Google Scholar 

  10. Woodworth MH, Neish EM, Miller NS et al (2017) Laboratory testing of donors and stool samples for fecal microbiota transplantation for recurrent Clostridium difficile infection. J Clin Microbiol 55:1002–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ianiro G, Porcari S, Bibbò S et al (2021) Donor program for fecal microbiota transplantation: a 3-year experience of a large-volume Italian stool bank. Dig Liver Dis 53:1428–32

    Article  CAS  PubMed  Google Scholar 

  12. Clinical and Laboratory Standards Institute (2021) M100-S31. Performance standards for antimicrobial susceptibility testing: 31th informational supplement. CLSI, Wayne, PA

  13. Ma L, Lu PL, Siu LK et al (2013) Molecular typing and resistance mechanisms of imipenem-non-susceptible Klebsiella pneumoniae in Taiwan: results from the Taiwan surveillance of antibiotic resistance (TSAR) study, 2002–2009. J Med Microbiol 62:101–7

    Article  CAS  PubMed  Google Scholar 

  14. Chen PA, Hung CH, Huang PC et al (2016) Characteristics of CTX-M extended-spectrum β-lactamase-producing Escherichia coli strains isolated from multiple rivers in southern Taiwan. Appl Environ Microbiol 82:1889–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Diancourt L, Passet V, Verhoef J et al (2005) Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 43:4178–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Svenungsson B, Lagergren A, Ekwall E et al (2000) Enteropathogens in adult patients with diarrhea and healthy control subjects: a 1-year prospective study in a Swedish clinic for infectious diseases. Clin Infect Dis 30:770–8

    Article  CAS  PubMed  Google Scholar 

  17. Craven LJ, Nair Parvathy S, Tat-Ko J et al (2017) Extended screening costs associated with selecting donors for fecal microbiota transplantation for treatment of metabolic syndrome-associated diseases. Open Forum Infect Dis 4:ofx243

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kassam Z, Dubois N, Ramakrishna B et al (2019) Donor screening for fecal microbiota transplantation. N Engl J Med 381:2070–2

    Article  PubMed  Google Scholar 

  19. Terveer EM, Vendrik KE, Ooijevaar RE et al (2020) Faecal microbiota transplantation for Clostridioides difficile infection: four years’ experience of the Netherlands Donor Feces Bank. United Eur Gastroenterol J 8:1236–1247

    Article  CAS  Google Scholar 

  20. van Nood E, Vrieze A, Nieuwdorp M et al (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368:407–15

    Article  PubMed  Google Scholar 

  21. Paramsothy S, Borody TJ, Lin E et al (2015) Donor recruitment for fecal microbiota transplantation. Inflamm Bowel Dis 21:1600–6

    Article  PubMed  Google Scholar 

  22. Costello SP, Tucker EC, La Brooy J et al (2016) Establishing a fecal microbiota transplant service for the treatment of Clostridium difficile infection. Clin Infect Dis 62:908–14

    Article  CAS  PubMed  Google Scholar 

  23. Terveer EM, van Beurden YH, Goorhuis A et al (2017) How to: establish and run a stool bank. Clin Microbiol Infect 23:924–30

    Article  CAS  PubMed  Google Scholar 

  24. Zhang S, Chen Q, Kelly CR et al (2022) Donor screening for fecal microbiota transplantation in China: evaluation of 8483 candidates. Gastroenterology 162:966-968.e3

    Article  PubMed  Google Scholar 

  25. Yau YK, Mak WYJ, Lui NSR et al (2021) High prevalence of extended-spectrum beta-lactamase organisms and the COVID-19 pandemic impact on donor recruitment for fecal microbiota transplantation in Hong Kong. United Eur Gastroenterol J 9:1027–38

    Article  Google Scholar 

  26. Seo HS, Chin HS, Kim YH et al (2021) Laboratory aspects of donor screening for fecal microbiota transplantation at a Korean fecal microbiota bank. Ann Lab Med 41:424–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vendrik KEW, Terveer EM, Kuijper EJ et al (2021) Periodic screening of donor faeces with a quarantine period to prevent transmission of multidrug-resistant organisms during faecal microbiota transplantation: a retrospective cohort study. Lancet Infect Dis 21:711–21

    Article  CAS  PubMed  Google Scholar 

  28. Bezabih YM, Bezabih A, Dion M et al (2022) Comparison of the global prevalence and trend of human intestinal carriage of ESBL-producing Escherichia coli between healthcare and community settings: a systematic review and meta-analysis. JAC Antimicrob Resist 4:dlac048

    Article  PubMed  PubMed Central  Google Scholar 

  29. Huang YS, Lai LC, Chen YA et al (2020) Colonization with multidrug-resistant organisms among healthy adults in the community setting: prevalence, risk factors, and composition of gut microbiome. Front Microbiol 11:1402

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chung HC, Lai CH, Lin JN et al (2012) Bacteremia caused by extended-spectrum-β-lactamase-producing Escherichia coli sequence type ST131 and non-ST131 clones: comparison of demographic data, clinical features, and mortality. Antimicrob Agents Chemother 56:618–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsai WL, Hung CH, Chen HA et al (2018) Extended-spectrum β-lactamase-producing Escherichia coli bacteremia: comparison of pediatric and adult populations. J Microbiol Immunol Infect 51:723–31

    Article  CAS  PubMed  Google Scholar 

  32. US Food and Drug Administration. Information pertaining to additional safety protections regarding use of fecal microbiota for transplantation – screening and testing of stool donors for multi-drug resistant organisms. June 18, 2019. https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/information-pertaining-additional-safety-protections-regarding-use-fecal-microbiota-transplantation. Accessed 7 December 2022

  33. Decker BK, Lau AF, Dekker JP et al (2018) Healthcare personnel intestinal colonization with multidrug-resistant organisms. Clin Microbiol Infect 24:82.e1-82.e4

    Article  CAS  PubMed  Google Scholar 

  34. Campos-Madueno EI, Moradi M, Eddoubaji Y et al (2023) Intestinal colonization with multidrug-resistant Enterobacterales: screening, epidemiology, clinical impact, and strategies to decolonize carriers. Eur J Clin Microbiol Infect Dis 42(3):229–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by grants from the Taipei Veterans General Hospital [V107E-007-1 (108), V108E-007-1 (108), V108E-007-1 (109), V110E-002-1].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Tsung Lin or Ming-Chih Hou.

Ethics declarations

Ethical approval and consent to participate

The study was approved by the Institution Review Board of Taipei Veterans General Hospital. All subjects that participated in this study gave a written informed consent.

Conflict of interest

The authors declare no competing interests.

Disclaimer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Additional information

The preliminary data of this study were presented at the annual meeting of the Infectious Diseases Society of Taiwan in March 2022.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuang, C., Lee, KC., Wang, YP. et al. High carriage rate of extended‐spectrum β‐lactamase Enterobacterales and diarrheagenic Escherichia coli in healthy donor screening for fecal microbiota transplantation. Eur J Clin Microbiol Infect Dis 42, 1103–1113 (2023). https://doi.org/10.1007/s10096-023-04644-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-023-04644-3

Keywords

Navigation