Skip to main content

Advertisement

Log in

Real-time recombinase-aided amplification assay for rapid amplification of the IS1081 gene of Mycobacterium tuberculosis

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Mycobacterium tuberculosis (MTB), the etiological agent of tuberculosis (TB), is the leading cause of death due to a single infectious agent worldwide. Rapid and accurate diagnosis of MTB is critical for controlling TB especially in resource-limited countries, since any diagnosis delay increases the chances of transmission. Here, a real-time recombinase-aided amplification (RAA) assay targeting conserved positions in IS1081 gene of MTB, is successfully established to detect MTB. The intact workflow was completed within 30 min at 42 °C with no cross-reactivity observed for non-tuberculous mycobacteria and other clinical bacteria, and the detection limit for recombinant plasmid of MTB IS1081 was 163 copies/reaction at 95% probability, which was approximately 1.5-fold increase in analytical sensitivity for the detection of MTB, compared to conventional quantitative real-time PCR (qPCR; 244 copies/reaction). Furthermore, the result of clinical performance evaluation revealed an increased sensitivity of RAA assay relative to qPCR was majorly noted in the specimens with low bacteria loads. Our results demonstrate that the developed real-time RAA assay is a convenient, sensitive, and low-cost diagnostic tool for the rapid detection of MTB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The dataset analyzed in this study is available from the corresponding author on reasonable request.

References

  1. Ma Z, Lienhardt C, McIlleron H, Nunn AJ, Wang X (2010) Global tuberculosis drug development pipeline: the need and the reality. Lancet 375(9731):2100–2109. https://doi.org/10.1016/S0140-6736(10)60359-9

    Article  PubMed  Google Scholar 

  2. Bagcchi S (2023) WHO’s Global Tuberculosis Report 2022. Lancet Microbe 4(1):e20. https://doi.org/10.1016/S2666-5247(22)00359-7

    Article  PubMed  Google Scholar 

  3. Lange C, Chesov D, Heyckendorf J, Leung CC, Udwadia Z, Dheda K (2018) Drug-resistant tuberculosis: an update on disease burden, diagnosis and treatment. Respirology 23(7):656–673. https://doi.org/10.1111/resp.13304

    Article  PubMed  Google Scholar 

  4. Parsons LM, Somoskovi A, Gutierrez C, Lee E, Paramasivan CN, Abimiku A, Spector S, Roscigno G, Nkengasong J (2011) Laboratory diagnosis of tuberculosis in resource-poor countries: challenges and opportunities. Clin Microbiol Rev 24(2):314–350. https://doi.org/10.1128/CMR.00059-10

    Article  PubMed  PubMed Central  Google Scholar 

  5. Steingart KR, Henry M, Ng V, Hopewell PC, Ramsay A, Cunningham J, Urbanczik R, Perkins M, Aziz MA, Pai M (2006) Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis 6(9):570–581. https://doi.org/10.1016/S1473-3099(06)70578-3

    Article  PubMed  Google Scholar 

  6. Andersen P, Munk ME, Pollock JM, Doherty TM (2000) Specific immune-based diagnosis of tuberculosis. Lancet 356(9235):1099–1104. https://doi.org/10.1016/s0140-6736(00)02742-2

    Article  CAS  PubMed  Google Scholar 

  7. World Health Organization (2022) Manual for selection of molecular WHO-recommended rapid diagnostic tests for detection of tuberculosis and drug-resistant tuberculosis. World Health Organization, Geneva

    Google Scholar 

  8. Acharya B, Acharya A, Gautam S, Ghimire SP, Mishra G, Parajuli N, Sapkota B (2020) Advances in diagnosis of Tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis. Mol Biol Rep 47(5):4065–4075. https://doi.org/10.1007/s11033-020-05413-7

    Article  CAS  PubMed  Google Scholar 

  9. Chen C, Li XN, Li GX, Zhao L, Duan SX, Yan TF, Feng ZS, Ma XJ (2018) Use of a rapid reverse-transcription recombinase aided amplification assay for respiratory syncytial virus detection. Diagn Microbiol Infect Dis 90(2):90–95. https://doi.org/10.1016/j.diagmicrobio.2017.10.005

    Article  CAS  PubMed  Google Scholar 

  10. Cui H, Tu F, Zhang C, Zhang C, Zhao K, Liu J, Dong S, Chen L, Liu J, Guo Z (2022) Real-time reverse transcription recombinase-aided amplification assay for rapid amplification of the N gene of SARS-CoV-2. Int J Mol Sci 23(23):15269. https://doi.org/10.3390/ijms232315269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shen XX, Qiu FZ, Shen LP, Yan TF, Zhao MC, Qi JJ, Chen C, Zhao L, Wang L, Feng ZS, Ma XJ (2019) A rapid and sensitive recombinase aided amplification assay to detect hepatitis B virus without DNA extraction. BMC Infect Dis 19(1):229. https://doi.org/10.1186/s12879-019-3814-9

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang J, Cai K, He X, Shen X, Wang J, Liu J, Xu J, Qiu F, Lei W, Cui L, Ge Y, Wu T, Zhang Y, Yan H, Chen Y, Yu J, Ma X, Shi H, Zhang R et al (2020) Multiple-centre clinical evaluation of an ultrafast single-tube assay for SARS-CoV-2 RNA. Clin Microbiol Infect 26(8):1076–1081. https://doi.org/10.1016/j.cmi.2020.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu K, Zhang Y, Zeng S, Liu X, Li Y, Li X, Chen W, Li Z, Qin Y, Chen J, Fan S (2021) Development and application of RAA nucleic acid test strip assay and double RAA Gel electrophoresis detection methods for ASFV and CSFV. Front Mol Biosci 8:811824. https://doi.org/10.3389/fmolb.2021.811824

    Article  CAS  PubMed  Google Scholar 

  14. Zhao N, Jia L, Che J, He X, Zhang B (2021) Novel molecular marker for RAA-LFD visual detection of Cynoglossus semilaevis sex. Anim Reprod Sci 226:106713. https://doi.org/10.1016/j.anireprosci.2021.106713

    Article  CAS  PubMed  Google Scholar 

  15. Mu D, Zhou D, Xie G, Liu J, Xiong Q, Feng X, Xu H (2021) The fluorescent probe-based recombinase-aided amplification for rapid detection of Escherichia coli O157:H7. Mol Cell Probes 60:101777. https://doi.org/10.1016/j.mcp.2021.101777

    Article  CAS  PubMed  Google Scholar 

  16. Zheng YZ, Chen JT, Li J, Wu XJ, Wen JZ, Liu XZ, Lin LY, Liang XY, Huang HY, Zha GC, Yang PK, Li LJ, Zhong TY, Liu L, Cheng WJ, Song XN, Lin M (2021) Reverse transcription recombinase-aided amplification assay with lateral flow dipstick assay for rapid detection of 2019 novel coronavirus. Front Cell Infect Microbiol 11:613304. https://doi.org/10.3389/fcimb.2021.613304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang HL, Zhang YH, Zhou JM, Li M, Chen YM, Liu YK, Liu HL, Ding PY, Liang C, Zhu XF, Zhang Y, Xin C, Zhang GP, Wang AP (2022) Rapid visual detection of hepatitis C virus using reverse transcription recombinase-aided amplification-lateral flow dipstick. Front Cell Infect Microbiol 12:63. https://doi.org/10.3389/fcimb.2022.816238

    Article  CAS  Google Scholar 

  18. Yan L, Zhou J, Zheng Y, Gamson AS, Roembke BT, Nakayama S, Sintim HO (2014) Isothermal amplified detection of DNA and RNA. Mol Biosyst 10(5):970–1003. https://doi.org/10.1039/c3mb70304e

    Article  CAS  PubMed  Google Scholar 

  19. Daher RK, Stewart G, Boissinot M, Bergeron MG (2016) Recombinase polymerase amplification for diagnostic applications. Clin Chem 62(7):947–958. https://doi.org/10.1373/clinchem.2015.245829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen Y, Zong N, Ye F, Mei Y, Qu J, Jiang X (2022) Dual-CRISPR/Cas12a-assisted RT-RAA for ultrasensitive SARS-CoV-2 detection on automated centrifugal microfluidics. Anal Chem 94(27):9603–9609. https://doi.org/10.1021/acs.analchem.2c00638

    Article  CAS  PubMed  Google Scholar 

  21. Tang C, Wu J, Chen Q, Wang Y (2022) CRISPR-Cas detection coupled with isothermal amplification of Bursaphelenchus xylophilus. Plant Dis. https://doi.org/10.1094/PDIS-07-22-1648-SR

  22. Lobato IM, O'Sullivan CK (2018) Recombinase polymerase amplification: basics, applications and recent advances. Trends Analyt Chem 98:19–35. https://doi.org/10.1016/j.trac.2017.10.015

    Article  CAS  PubMed  Google Scholar 

  23. Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360(6387):436–439. https://doi.org/10.1126/science.aar6245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Azmi I, Faizan MI, Kumar R, Raj Yadav S, Chaudhary N, Kumar Singh D, Butola R, Ganotra A, Datt Joshi G, Deep Jhingan G, Iqbal J, Joshi MC, Ahmad T (2021) A saliva-based RNA extraction-free workflow integrated with Cas13a for SARS-CoV-2 detection. Front Cell Infect Microbiol 11:632646. https://doi.org/10.3389/fcimb.2021.632646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ren W, Zhou Y, Li H, Shang Y, Zhang X, Yuan J et al (2023) Development and clinical evaluation of a CRISPR/ Cas13a-based diagnostic test to detect Mycobacterium tuberculosis in clinical specimens. Front Microbiol 14:1117085. https://doi.org/10.3389/fmicb.2023.1117085

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tu F, Yang X, Xu S, Chen D, Zhou L, Ge X, Han J, Zhang Y, Guo X, Yang H (2021) Development of a fluorescent probe-based real-time reverse transcription recombinase-aided amplification assay for the rapid detection of classical swine fever virus. Transbound Emerg Dis 68(4):2017–2027. https://doi.org/10.1111/tbed.13849

    Article  CAS  PubMed  Google Scholar 

  27. Duffy SC, Venkatesan M, Chothe S, Poojary I, Verghese VP, Kapur V, Behr MA, Michael JS (2021) Development of a multiplex real-time PCR assay for Mycobacterium bovis BCG and validation in a clinical laboratory. Microbiol Spectr 9(2):e0109821. https://doi.org/10.1128/Spectrum.01098-21

    Article  PubMed  Google Scholar 

  28. Xue G, Li S, Zhao H, Yan C, Feng Y, Cui J, Jiang T, Yuan J (2020) Use of a rapid recombinase-aided amplification assay for Mycoplasma pneumoniae detection. BMC Infect Dis 20(1):79. https://doi.org/10.1186/s12879-019-4750-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qin L, Huo F, Ren W, Shang Y, Yao C, Zhang X, Liu R, Ma L, Gao M, Pang Y (2021) Dependence of Xpert MTB/RIF accuracy for detecting rifampin resistance in bronchoalveolar lavage fluid on bacterial load: a retrospective study in Beijing, China. Infect Drug Resist 14:2429–2435. https://doi.org/10.2147/IDR.S307488

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zeka AN, Tasbakan S, Cavusoglu C (2011) Evaluation of the GeneXpert MTB/RIF assay for rapid diagnosis of tuberculosis and detection of rifampin resistance in pulmonary and extrapulmonary specimens. J Clin Microbiol 49(12):4138–4141. https://doi.org/10.1128/JCM.05434-11

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bojang AL, Mendy FS, Tientcheu LD, Otu J, Antonio M, Kampmann B, Agbla S, Sutherland JS (2016) Comparison of TB-LAMP, GeneXpert MTB/RIF and culture for diagnosis of pulmonary tuberculosis in The Gambia. J Infect 72(3):332–337. https://doi.org/10.1016/j.jinf.2015.11.011

    Article  PubMed  Google Scholar 

  32. Deng Y, Ma Z, Su B, Bai G, Pan J, Wang Q, Cai L, Song Y, Shang Y, Ma P, Li J, Zhou Q, Mulati G, Fan D, Li S, Tan Y, Pang Y (2023) Accuracy of the InnowaveDX MTB/RIF test for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre study. Emerg Microbes Infect 12(1):2151382. https://doi.org/10.1080/22221751.2022.2151382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jagielski T, Minias A, van Ingen J, Rastogi N, Brzostek A, Zaczek A, Dziadek J (2016) Methodological and clinical aspects of the molecular epidemiology of Mycobacterium tuberculosis and other mycobacteria. Clin Microbiol Rev 29(2):239–290. https://doi.org/10.1128/CMR.00055-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Beijing Hospitals Authority Ascent Plan (DFL20191601), the Capital”s Funds for Health Improvement and Research (2020-1-1041), and the Beijing Hospitals Authority Clinical Medicine Development of Special Funding (ZYLX202122). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, F. L .M. and Y. P.; methodology, Y. Y. L. and W. C. R.; software, Z. T. X.; validation, Y. D. M., W. W., and X. X .Z.; formal analysis, C. Y.; investigation, Y. Y. S.; resources, S. S. L.; data curation, Y. Y. L. and Y. P.; writing—original draft preparation, Y. Y. L. and Y. P.; writing—review and editing, Y. P.; visualization, W. C. R; supervision, F. L. M. and Y. P.; project administration, Y. P.; funding acquisition, Y. P. All the authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Fengling Mi or Yu Pang.

Ethics declarations

Ethical approval

This study was conducted in accordance with the tenets of the World Medical Association’s Declaration of Helsinki and approved by the Ethics Committee of Beijing Chest Hospital, Capital Medical University (Approval No.: 2016KY005). Because this study only included demographic and clinical data anonymously, individual written consent was waived.

Consent for publication

All the authors have given their consent for the publication of the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Ren, W., Xue, Z. et al. Real-time recombinase-aided amplification assay for rapid amplification of the IS1081 gene of Mycobacterium tuberculosis. Eur J Clin Microbiol Infect Dis 42, 963–972 (2023). https://doi.org/10.1007/s10096-023-04626-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-023-04626-5

Keywords

Navigation