Skip to main content

Advertisement

Log in

Evaluation of a sterile, filter-based, in-house method for rapid direct bacterial identification and antimicrobial susceptibility testing using positive blood culture

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

This study aimed to assess the performance of our in-house method for rapid direct bacterial identification (ID) and antimicrobial susceptibility testing (AST) using a positive blood culture (BC) broth. For Gram-negative bacteria, 4 mL of BC broth was aspirated and passed through a Sartorius Minisart syringe filter with a pore size of 5 µm. The filtrate was then centrifuged and washed. A small volume of the pellet was used for ID, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and for AST, using automated broth microdilution. For Gram-positive cocci, 4 mL of BC broth was passed through the Minisart syringe filter. Then, 4 mL of sterile distilled water was injected in the direction opposite to that of the filtration to collect the bacterial residue trapped in the filter. Compared with the conventional method performed with pure colonies on agar plates, 94.0% (234/249) were correctly identified using the in-house method, with rates of 91.4% (127/139) and 97.3% (107/110) for Gram-positive and Gram-negative isolates, respectively. Of 234 correctly identified isolates, 230 were assessed by AST. Categorical agreement and essential agreement were 93.3% and 94.5%, respectively, with a minor error rate of 3.8%, a major error rate of 3.4%, and a very major error rate of 1.6%. Our in-house preparation method showed good performance in rapid direct ID and AST using positive BC broths compared to the conventional method. This simple method can shorten the conventional turnaround time for ID and AST by at least 1 day, potentially contributing to better patient management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

In the article or as supplementary information, all data pertinent to the study are included.

Code availability

Not applicable.

References

  1. McNamara JF, Righi E, Wright H, Hartel GF, Harris PNA, Paterson DL (2018) Long-term morbidity and mortality following bloodstream infection: a systematic literature review. J Infect 77:1–8. https://doi.org/10.1016/j.jinf.2018.03.005

    Article  PubMed  Google Scholar 

  2. Prod’hom G, Bizzini A, Durussel C, Bille J, Greub G (2010) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets. J Clin Microbiol 48:1481–1483. https://doi.org/10.1128/JCM.01780-09

    Article  PubMed  PubMed Central  Google Scholar 

  3. Infante A, Ortiz de la Tabla V, Martín C, Gázquez G, Buñuel F (2021) Rapid identification and antimicrobial susceptibility testing of Gram-negative rod on positive blood cultures using MicroScan panels. Eur J Clin Microbiol Infect Dis 40:151–157. https://doi.org/10.1007/s10096-020-04014-3

    Article  CAS  PubMed  Google Scholar 

  4. Juttukonda LJ, Katz S, Gillon J, Schmitz J, Banerjee R (2020) Impact of a rapid blood culture diagnostic test in a children’s hospital depends on Gram-positive versus Gram-negative organism and day versus night shift. J Clin Microbiol 58:e01400-e1419. https://doi.org/10.1128/JCM.01400-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Banerjee R, Komarow L, Virk A, Rajapakse N, Schuetz AN, Dylla B, Earley M, Lok J, Kohner P, Ihde S, Cole N, Hines L, Reed K, Garner OB, Chandrasekaran S, de St MA, Kanatani M, Curello J, Arias R, Swearingen W, Doernberg SB, Patel R (2021) Randomized trial evaluating clinical impact of RAPid IDentification and susceptibility testing for Gram-negative bacteremia: RAPIDS-GN. Clin Infect Dis 73:e39–e46. https://doi.org/10.1093/cid/ciaa528

    Article  CAS  PubMed  Google Scholar 

  6. Campion M, Scully G (2018) Antibiotic use in the intensive care unit: optimization and de-escalation. J Intensive Care Med 33:647–655. https://doi.org/10.1177/0885066618762747

    Article  PubMed  Google Scholar 

  7. Munson EL, Diekema DJ, Beekmann SE, Chapin KC, Doern GV (2003) Detection and treatment of bloodstream infection: laboratory reporting and antimicrobial management. J Clin Microbiol 41:495–497. https://doi.org/10.1128/JCM.41.1.495-497.2003

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barnini S, Ghelardi E, Brucculeri V, Morici P, Lupetti A (2015) Rapid and reliable identification of Gram-negative bacteria and Gram-positive cocci by deposition of bacteria harvested from blood cultures onto the MALDI-TOF plate. BMC Microbiol 15:124. https://doi.org/10.1186/s12866-015-0459-8

    Article  PubMed  PubMed Central  Google Scholar 

  9. Azrad M, Keness Y, Nitzan O, Pastukh N, Tkhawkho L, Freidus V, Peretz A (2019) Cheap and rapid in-house method for direct identification of positive blood cultures by MALDI-TOF MS technology. BMC Infect Dis 19:72. https://doi.org/10.1186/s12879-019-3709-9

    Article  PubMed  PubMed Central  Google Scholar 

  10. ZenginCanalp H, Bayraktar B (2021) Direct rapid identification from positive blood cultures by MALDI-TOF MS: specific focus on turnaround times. Microbiol Spectr 9:e0110321. https://doi.org/10.1128/spectrum.01103-21

    Article  Google Scholar 

  11. Jakovljev A, Bergh K (2015) Development of a rapid and simplified protocol for direct bacterial identification from positive blood cultures by using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. BMC Microbiol 15:258. https://doi.org/10.1186/s12866-015-0594-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang YL, Sun QL, Li JP, Hu YY, Zhou HW, Zhang R (2019) Evaluation of an in-house MALDI-TOF MS rapid diagnostic method for direct identification of micro-organisms from blood cultures. J Med Microbiol 68:41–47. https://doi.org/10.1099/jmm.0.000866

    Article  CAS  PubMed  Google Scholar 

  13. López-Pintor JM, Navarro-San Francisco C, Sánchez-López J, García-Caballero A, Fernández L, de Bobadilla E, Morosini MI, Cantón R (2019) Direct antimicrobial susceptibility testing from the blood culture pellet obtained for MALDI-TOF identification of Enterobacterales and Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 38:1095–1104. https://doi.org/10.1007/s10096-019-03498-y

    Article  CAS  PubMed  Google Scholar 

  14. Sakarikou C, Altieri A, Bossa MC, Minelli S, Dolfa C, Piperno M, Favalli C (2018) Rapid and cost-effective identification and antimicrobial susceptibility testing in patients with Gram-negative bacteremia directly from blood-culture fluid. J Microbiol Methods 146:7–12. https://doi.org/10.1016/j.mimet.2018.01.012

    Article  PubMed  Google Scholar 

  15. Simon L, Ughetto E, Gaudart A, Degand N, Lotte R, Ruimy R (2019) Direct identification of 80 percent of bacteria from blood culture bottles by matrix-assisted laser desorption ionization-time of flight mass spectrometry using a 10-minute extraction protocol. J Clin Microbiol 57:e01278-e1318. https://doi.org/10.1128/JCM.01278-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Peker N, Couto N, Sinha B, Rossen JW (2018) Diagnosis of bloodstream infections from positive blood cultures and directly from blood samples: recent developments in molecular approaches. Clin Microbiol Infect 24:944–955. https://doi.org/10.1016/j.cmi.2018.05.007

    Article  CAS  PubMed  Google Scholar 

  17. Ko YJ, Kook JK, Lee CK (2021) In-house method for direct bacterial identification in positive blood culture broths using microfiltration, bead beating, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Microbiol Methods 180:106065. https://doi.org/10.1016/j.mimet.2020.106065

    Article  CAS  PubMed  Google Scholar 

  18. Klein S, Zimmermann S, Köhler C, Mischnik A, Alle W, Bode KA (2012) Integration of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in blood culture diagnostics: a fast and effective approach. J Med Microbiol 61(Pt 3):323–331. https://doi.org/10.1099/jmm.0.035550-0

    Article  CAS  PubMed  Google Scholar 

  19. Morgenthaler NG, Kostrzewa M (2015) Rapid identification of pathogens in positive blood culture of patients with sepsis: review and meta-analysis of the performance of the sepsityper kit. Int J Microbiol 2015:827416. https://doi.org/10.1155/2015/827416

    Article  PubMed  PubMed Central  Google Scholar 

  20. Saffert RT, Cunningham SA, Mandrekar J, Patel R (2012) Comparison of three preparatory methods for detection of bacteremia by MALDI-TOF mass spectrometry. Diagn Microbiol Infect Dis 73:21–26. https://doi.org/10.1016/j.diagmicrobio.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  21. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  22. CLSI (2022) Performance standards for antimicrobial susceptibility testing, 32nd ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, Wayne, PA

  23. Wong AYW, Johnsson ATA, Özenci V (2022) Performance of dRAST on prospective clinical blood culture samples in a simulated clinical setting and on multidrug-resistant bacteria. Microbiol Spectr 10:e0210721. https://doi.org/10.1128/spectrum.02107-21

    Article  PubMed  Google Scholar 

  24. CLSI (2015) Verification of commercial microbial identification and antimicrobial susceptibility testing systems, 1st ed. CLSI Guideline M52. Clinical and Laboratory Standards Institute, Wayne, PA

  25. U.S. Food and Drug Administration (2018) Antimicrobial susceptibility test (AST) systems - Class II special controls guidance for industry and FDA. FDA. https://www.fda.gov/medicaldevices/guidance-documents-medical-devices-and-radiation-emitting-products/antimicrobial-susceptibility-test-astsystems-class-ii-special-controls-guidance-industry-and-fda. Accessed 19 Dec 2022

  26. Humphries RM, Ambler J, Mitchell SL, Castanheira M, Dingle T, Hindler JA, Koeth L, Sei K (2018) CLSI Methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J Clin Microbiol 56:e01934-e2017. https://doi.org/10.1128/JCM.01934-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tabak YP, Vankeepuram L, Ye G, Jeffers K, Gupta V, Murray PR (2018) Blood culture turnaround time in U.S. acute care hospitals and implications for laboratory process optimization. J Clin Microbiol 56:e00500-e518. https://doi.org/10.1128/JCM.00500-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Banerjee R, Humphries R (2021) Rapid antimicrobial susceptibility testing methods for blood cultures and their clinical impact. Front Med (Lausanne) 8:635831. https://doi.org/10.3389/fmed.2021.635831

    Article  PubMed  Google Scholar 

  29. Timbrook TT, Morton JB, McConeghy KW, Caffrey AR, Mylonakis E, LaPlante KL (2017) The Effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis 64:15–23. https://doi.org/10.1093/cid/ciw649

    Article  PubMed  Google Scholar 

  30. Meex C, Neuville F, Descy J, Huynen P, Hayette MP, De Mol P, Melin P (2012) Direct identification of bacteria from BacT/ALERT anaerobic positive blood cultures by MALDI-TOF MS: MALDI Sepsityper kit versus an in-house saponin method for bacterial extraction. J Med Microbiol 61:1511–1516. https://doi.org/10.1099/jmm.0.044750-0

    Article  CAS  PubMed  Google Scholar 

  31. Ponderand L, Pavese P, Maubon D, Giraudon E, Girard T, Landelle C, Maurin M, Caspar Y (2020) Evaluation of Rapid Sepsityper® protocol and specific MBT-Sepsityper module (Bruker Daltonics) for the rapid diagnosis of bacteremia and fungemia by MALDI-TOF-MS. Ann Clin Microbiol Antimicrob 19:60. https://doi.org/10.1186/s12941-020-00403-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Watanabe N, Koyama S, Taji Y, Mitsutake K, Ebihara Y (2022) Direct microorganism species identification and antimicrobial susceptibility tests from positive blood culture bottles using rapid Sepsityper Kit. J Infect Chemother 28(4):563–568. https://doi.org/10.1016/j.jiac.2021.12.030

    Article  CAS  PubMed  Google Scholar 

  33. Yonetani S, Ohnishi H, Ohkusu K, Matsumoto T, Watanabe T (2016) Direct identification of microorganisms from positive blood cultures by MALDI-TOF MS using an in-house saponin method. Int J Infect Dis 52:37–42. https://doi.org/10.1016/j.ijid.2016.09.014

    Article  CAS  PubMed  Google Scholar 

  34. Marí-Almirall M, Cosgaya C, Higgins PG, Van Assche A, Telli M, Huys G, Lievens B, Seifert H, Dijkshoorn L, Roca I, Vila J (2017) MALDI-TOF/MS identification of species from the Acinetobacter baumannii (Ab) group revisited: inclusion of the novel A. seifertii and A. dijkshoorniae species. Clin Microbiol Infect 23:210.e211-210.e219. https://doi.org/10.1016/j.cmi.2016.11.020

    Article  CAS  Google Scholar 

  35. Rodrigues C, Passet V, Rakotondrasoa A, Brisse S (2018) Identification of Klebsiella pneumoniae, Klebsiellaquasipneumoniae, Klebsiellavariicola and related phylogroups by MALDI-TOF mass spectrometry. Front Microbiol 9:3000. https://doi.org/10.3389/fmicb.2018.03000

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pan HW, Li W, Li RG, Li Y, Zhang Y, Sun EH (2018) Simple sample preparation method for direct microbial identification and susceptibility testing from positive blood cultures. Front Microbiol 9:481. https://doi.org/10.3389/fmicb.2018.00481

    Article  PubMed  PubMed Central  Google Scholar 

  37. van Hal SJ, Jensen SO, Vaska VL, Espedido BA, Paterson DL, Gosbell IB (2012) Predictors of mortality in Staphylococcus aureus bacteremia. Clin Microbiol Rev 25:362–386. https://doi.org/10.1128/CMR.05022-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brown DF, Edwards DI, Hawkey PM, Morrison D, Ridgway GL, Towner KJ, Wren MW (2005) Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA). J Antimicrob Chemother 56:1000–1018. https://doi.org/10.1093/jac/dki372

    Article  CAS  PubMed  Google Scholar 

  39. Xie O, Slavin MA, Teh BW, Bajel A, Douglas AP, Worth LJ (2020) Epidemiology, treatment and outcomes of bloodstream infection due to vancomycin-resistant enterococci in cancer patients in a vanB endemic setting. BMC Infect Dis 20:228. https://doi.org/10.1186/s12879-020-04952-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Keshta AS, Elamin N, Hasan MR, Pérez-López A, Roscoe D, Tang P, Suleiman M (2021) Evaluation of rapid immunochromatographic tests for the direct detection of extended spectrum beta-lactamases and carbapenemases in enterobacterales isolated from positive blood cultures. Microbiol Spectr 9:e0078521. https://doi.org/10.1128/Spectrum.00785-21

    Article  PubMed  Google Scholar 

  41. Zavascki AP, Carvalhaes CG, Picão RC, Gales AC (2010) Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: resistance mechanisms and implications for therapy. Expert Rev Anti Infect Ther 8:71–93. https://doi.org/10.1586/eri.09.108

    Article  CAS  PubMed  Google Scholar 

  42. Paterson DL (2006) The epidemiological profile of infections with multidrug-resistant Pseudomonas aeruginosa and Acinetobacter species. Clin Infect Dis 43(Suppl 2):S43-48. https://doi.org/10.1086/504476

    Article  PubMed  Google Scholar 

  43. Peleg AY, Seifert H, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21:538–582. https://doi.org/10.1128/CMR.00058-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Motbainor H, Bereded F, Mulu W (2020) Multi-drug resistance of blood stream, urinary tract and surgical site nosocomial infections of Acinetobacter baumannii and Pseudomonas aeruginosa among patients hospitalized at Felegehiwot referral hospital, Northwest Ethiopia: a cross-sectional study. BMC Infect Dis 20:9235. https://doi.org/10.1186/s12879-020-4811-8

    Article  CAS  Google Scholar 

  45. Exner M, Bhattacharya S, Christiansen B, Gebel J, Goroncy-Bermes P, Hartemann P, Heeg P, Ilschner C, Kramer A, Larson E, Merkens W, Mielke M, Oltmanns P, Ross B, Rotter M, Schmithausen RM, Sonntag HG, Trautmann M (2017) Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg Infect Control 12:05. https://doi.org/10.3205/dgkh000290

    Article  Google Scholar 

  46. Waites KB, Brookings ES, Moser SA, Zimmer BL (1998) Direct susceptibility testing with positive BacT/Alert blood cultures by using MicroScan overnight and rapid panels. J Clin Microbiol 36:2052–2056. https://doi.org/10.1128/JCM.36.7.2052-2056.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nassar MSM, Hazzah WA, Bakr WMK (2019) Evaluation of antibiotic susceptibility test results: how guilty a laboratory could be? J Egypt Public Health Assoc 94:4. https://doi.org/10.1186/s42506-018-0006-1

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lenhard JR, Bulman ZP (2019) Inoculum effect of β-lactam antibiotics. J Antimicrob Chemother 74:2825–2843. https://doi.org/10.1093/jac/dkz226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Idelevich EA, Becker K (2019) How to accelerate antimicrobial susceptibility testing. Clin Microbiol Infect 25:1347–1355. https://doi.org/10.1016/j.cmi.2019.04.025

    Article  CAS  PubMed  Google Scholar 

  50. Smith KP, Kirby JE (2018) The inoculum effect in the era of multidrug resistance: minor differences in inoculum have dramatic effect on MIC determination. Antimicrob Agents Chemother 62:e00433-e518. https://doi.org/10.1128/AAC.00433-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of this study. Material preparation, data collection, and analysis were performed by all authors. The first draft of the manuscript was written by Keun Ju Kim, and all the authors commented on the previous versions of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Chang Kyu Lee.

Ethics declarations

Ethics approval

This study was approved by the Institutional Review Board (IRB) of the Korea University Anam Hospital (2018AN0057).

Consent to participate

A waiver of informed consent was granted by the IRB owing to the use of remnant and de-identified samples for the study.

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 49 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.J., Yun, S.G., Cho, Y. et al. Evaluation of a sterile, filter-based, in-house method for rapid direct bacterial identification and antimicrobial susceptibility testing using positive blood culture. Eur J Clin Microbiol Infect Dis 42, 691–700 (2023). https://doi.org/10.1007/s10096-023-04592-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-023-04592-y

Keywords

Navigation