Skip to main content
Log in

Investigation of the presence of Capnophilic bacteria in routine urine cultures

  • Brief Report
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Capnophilic Escherichia coli (CEC) strains are rarely isolated from urinary tract infections (UTIs). The purpose of this research was to look into the incidence and traits of the CEC strains that cause UTIs. Nine (0.11%) epidemiologically unrelated CEC isolates with varying antibiotic susceptibility patterns were identified from patients with various co-morbidities after the evaluation of 8500 urine samples. Three of these strains belonged to the O25b-ST131 clone, and none of them possessed the yadF gene. Due to adverse incubation conditions, CEC isolation is difficult. Although rare, capnophilic incubation of urine cultures may be considered particularly for patients with underlying predisposing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data availability

Our manuscript has no associated data in the data repository.

References

  1. Sahuquillo-Arce JM, Chouman-Arcas R, Molina-Moreno JM, Hernandez-Cabezas A, Frasquet-Artes J, Lopez-Hontangas JL (2017) Capnophilic Enterobacteriaceae. Diagn Microbiol Infect Dis 87:318–319. https://doi.org/10.1016/j.diagmicrobio.2017.01.010

    Article  CAS  PubMed  Google Scholar 

  2. Smelov V, Naber K, Bjerklund Johansen TE (2016) Improved classification of urinary tract infection: future considerations. Eur Urol Suppl 15:71–80. https://doi.org/10.1016/j.eursup.2016.04.002

    Article  Google Scholar 

  3. Ueda K, Tagami Y, Kamihara Y, Shiratori H, Takano H, Beppu T (2008) Isolation of bacteria whose growth is dependent on high levels of CO2 and implications of their potential diversity. Appl Environ Microbiol 74:4535–4538. https://doi.org/10.1128/AEM.00491-08

  4. Matsumoto T, Hashimoto M, Teng C-H, Hsu P-C, Ota Y, Takamizawa M, Kato R, Negishi T (2020) Molecular characterization of a carbon dioxide-dependent Escherichia coli small-colony variant isolated from blood cultures. Int J Med Microbiol 310:151431. https://doi.org/10.1016/j.ijmm.2020.151431

  5. Soga E, Akiyama M, Ohsaki Y, Hayaski W, Matsumoto T, Ozana K, Nagano N, Kawakami Y (2019) Isolation of a capnophilic and extended-spectrum β-lactamase-producing Proteus mirabilis strain from the urine of an octogenarian male patient with acute pyelonephritis. Jpn J Infect Dis 72:193–195. https://doi.org/10.7883/yoken.JJID.2018.201

    Article  CAS  PubMed  Google Scholar 

  6. Eykyn S, Phillips I (1978) Carbon dioxide-dependent Escherichia coli. Br Med J 1:576 https://doi.org/10.1136/bmj.1.6112.576-b

  7. Tena D, Gonzales-Praetorius A, Saez-Nieto JA, Valdezate S, Bisquert J (2008) Urinary tract infection caused by capnophilic Escherichia coli. Emerg Infect Dis 14:1163–1164. https://doi.org/10.3201/eid1407.071053

    Article  PubMed  PubMed Central  Google Scholar 

  8. Park YJ, Phuong NL, Pinto NA, Kwon MJ, D’Souza R, Byun J-H, Sung H, Yong D (2018) Urinary tract infection caused by a small colony variant form of capnophilic Escherichia coli leading to misidentification and non-reactions in antimicrobial susceptibility tests. Antimicrob Resist Infect Control 7:139. https://doi.org/10.1186/s13756-018-0438-6

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lu W, Chang K, Deng S, Li M, Wang J, Xia J, Huang H, Chen M (2012) Isolation of a capnophilic Escherichia coli strain from an empyemic patient. Diagn Microbiol Infect Dis 73:291–292. https://doi.org/10.1016/j.diagmicrobio.2012.03.020

    Article  PubMed  Google Scholar 

  10. Klinik Mikrobiyoloji Uzmanlık Derneği (KLİMUD), Tıbbi Mikrobiyoloji Uzmanları İçin Klinik Örnekten Sonuç Raporuna Uygulama Rehberi: Üriner Sistem Örnekleri (2017) Çağhan Ofset, Ankara

  11. Chan WW (2016) Urine cultures. In: Leber AL (editor in chief) Clinical Microbiology Procedures Handbook 4th edn. ASM Press, Washington D.C. pp 3.12.  https://doi.org/10.1128/9781555818814.ch3.12

  12. McCarter, YS, Burd EM, Hall GS, Zervos M (2009) Cumitech 2C, Laboratory Diagnosis of Urinary Tract Infections. Coordinating ed. Sharp SE. ASM Press, Washington, DC

  13. The European Committeee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MIC and zone diameters. Version 8.1. (available at: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.1_Breakpoint_Tables.pdf ). Accessed 2 Feb 2023

  14. The European Committeee on Antimicrobial Susceptibility Testing. Breakpoint Tables for interpretation of MIC and zone diameters. Version 9.0. (available at: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_9.0_Breakpoint_Tables.pdf ). Accessed 2 Feb 2023

  15. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. Version 2.0, July 2017 (available at: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf ). Accessed 2 Feb 2023

  16. Clermont O, Bonacorsi S, Bingen E (2000) Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66:4555–4558. https://doi.org/10.1128/aem.66.10.4555-4558.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Clermont O, Dhanji H, Upton M, Gibreel T, Fox A, Boyd D, Mulvey MR, Nordmann P, Ruppé E, Sarthou JL, Frank T, Vimont S, Arlet G, Branger C, Woodford N, Denamur E (2009) Rapid detection of the O25b-ST131 clone of Escherichia coli encompassing the CTX-M-15-producing strains. J Antimicrob Chemother 64:274–277. https://doi.org/10.1093/jac/dkp194

    Article  CAS  PubMed  Google Scholar 

  18. Standard Operating Procedure for PulseNet PFGE of Escherichia coli O157:H7, Escherichia coli non-O157 (STEC), Salmonella serotypes, Shigella sonnei and Shigella flexneri. (available at: https://www.cdc.gov/pulsenet/pdf/ecoli-shigella-salmonella-pfge-protocol-508c.pdf. Accessed 2 Feb 2023

  19. Rachman M (1977) Carbon dioxide-dependent Staphylococcus aureus from abscess. Br Med J 2:319. https://doi.org/10.1136/bmj.2.6082.319-b

    Article  Google Scholar 

  20. Beck A, Hounsome G (1977) Carbon dioxide-dependent staphylococcus. Br Med J 2:582. https://doi.org/10.1136/bmj.2.6086.582-a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Berker J, Brookes G, Johnson T (1978) Carbon dioxide-dependent klebsiellae. Br Med J 1:300. https://doi.org/10.1136/bmj.1.6108.300

    Article  Google Scholar 

  22. Clinical and Laboratory Standards Institute (CLSI) (2018) Performance standards for antimicrobial susceptibility testing 29th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute

  23. Ahman J, Matuschek E, Kahlmeter G (2020) EUCAST evaluation of 21 brands of Mueller-Hinton dehydrated media for disc diffusion testing. Clin Microbiol Infect 26:1412.e1-1412.e5. https://doi.org/10.1016/j.cmi.2020.01.018

    Article  CAS  PubMed  Google Scholar 

  24. Johnson MM, Hill SL, Piddock L (1999) Effect of carbon dioxide on testing of susceptibilities of respiratory tract pathogens to macrolide and azalide antimicrobial agents. Antimicrob Agents Chemother 43:1862–1865. https://doi.org/10.1128/AAC.43.8.1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Raven JA (2006) Sensing inorganic carbon: CO2 and HCO3. Biochem J 396:e5–e7. https://doi.org/10.1042/bj20060574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24:335–366. https://doi.org/10.1111/j.1574-6976.2000.tb00546.x

    Article  CAS  PubMed  Google Scholar 

  27. Hashimoto M, Kato J (2003) Indispensability of the Escherichia coli carbonic anhydrases YadF and CynT in cell proliferation at a low CO2 partial pressure. Biosci Biotechnol Biochem 67:919–922. https://doi.org/10.1271/bbb.67.919

    Article  CAS  PubMed  Google Scholar 

  28. Supuran CT, Capasso C (2017) An overview of the bacterial carbonic anhydrases. Metabolites 56:7. https://doi.org/10.3390/metabo7040056

    Article  CAS  Google Scholar 

  29. Merlin C, Masters M, McAteer S, Coulson A (2003) Why is carbonic anhydrase essential to Escherichia coli? J Bacteriol 185:6415–6424. https://doi.org/10.1128/JB.185.21.6415-6424.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smith KS, Jakubzick C, Whittam TS, Ferry JG (1999) Carbonic anhydrase is an ancient enzyme widespread in prokaryotes. PNAS 96:15184–15189. https://doi.org/10.1073/pnas.96.26.15184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cronk JD, Endrizzi JA, Cronk MR, O’Neill JW, Zhang KYJ (2001) Crystal structure of E. coli beta-carbonic anhydrase, an enzyme with an unusual pH-dependent activity. Protein Sci 10:911–922. https://doi.org/10.1110/ps.46301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hong SK, Boylan JW, Tannenberg AM, Rahn H (1960) Total and partial gas tensions of human bladder urine. J Appl Physiol 15:115–120. https://doi.org/10.1152/jappl.1960.15.1.115

    Article  CAS  PubMed  Google Scholar 

  33. Can F, Kurt Azap O, Seref C, Ispir P, Arslan H, Ergonul O (2015) Emerging Escherichia coli O25b/ST131 clone predicts treatment failure in urinary tract infections. Clin Infect Dis 60:523–527. https://doi.org/10.1093/cid/ciu864

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and phenotypic analysis (including culture and antimicrobial susceptibility testing) of the capnophilic strains were performed by Zeynep Ceren Karahan, İrem Altınsoy, Bilge Nur Çalışkan, Sıla Dede, Görkem Kayış, Hasan Can Türkoğlu, and Ebru Evren. yadF PCR analysis was performed by Zeynep Ceren Karahan. Determination of the phylogenetic group and investigation of the O25b-ST131 clone by PCR analysis was performed by Selin Gamze Kılıç and İştar Dolapçı. PFGE analysis was performed by Alper Tekeli. Statistical analysis was performed by Beyza Doğanay Erdoğan. The first draft of the manuscript was written by Zeynep Ceren Karahan, and all authors commented and contributed to the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zeynep Ceren Karahan.

Ethics declarations

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the “Undergraduate Student Researches Ethics Committee” of Ankara University School of Medicine (24.12.2018/9492).

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karahan, Z.C., Altinsoy, İ., Çalişkan, B.N. et al. Investigation of the presence of Capnophilic bacteria in routine urine cultures. Eur J Clin Microbiol Infect Dis 42, 519–524 (2023). https://doi.org/10.1007/s10096-023-04570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-023-04570-4

Keywords

Navigation