Skip to main content
Log in

Antimicrobial activities of aztreonam-avibactam and comparator agents tested against Enterobacterales from European hospitals analysed by geographic region and infection type (2019–2020)

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The purpose of this study is to evaluate the activities of aztreonam-avibactam and comparator agents against Enterobacterales isolates from European medical centres as well as the occurrence of carbapenemases (CPEs). A total of 11,655 Enterobacterales isolates were collected consecutively in 2019–2020 from 38 medical centres located in Western Europe (W-EU; n = 8,784; 25 centres in 10 countries) and the Eastern European and Mediterranean region (E-EU; n = 2,871; 13 centres in 10 countries). Isolates were susceptibility tested by broth microdilution methods in a monitoring laboratory. The antimicrobial susceptibility and frequency of key resistance phenotypes were assessed and stratified by geographic region and infection type. Isolates that showed resistance to carbapenems (CRE) and/or elevated MICs (> 8 mg/L) for aztreonam-avibactam were screened for β-lactamase-encoding genes by whole-genome sequencing. Aztreonam-avibactam inhibited 99.9% of Enterobacterales at ≤ 8 mg/L (MIC50/90, ≤ 0.03/0.12 mg/L) and retained potent activity against CRE (MIC50/90, 0.25/0.5 mg/L), multidrug-resistant isolates (MDR; MIC50/90, 0.12/0.5 mg/L), and extensively drug-resistant (XDR) isolates (MIC50/90, 0.25/0.5 mg/L). Susceptibility to comparator agents was consistently lower among isolates from E-EU compared to W-EU for all infection types evaluated. CRE rates varied from 0.6% (urinary tract infection [UTI]) to 2.3% (bloodstream infection) in W-EU, and from 6.1% (UTI) to 17.0% (pneumonia) in E-EU. A CPE-encoding gene was identified in 360 of 424 (84.9%) CRE isolates, and the most common CPEs were blaKPC (36.3% of CRE), blaOXA-48 type (27.1% of CRE), and the MBLs (25.7% of CRE). All CPE producers were inhibited at an aztreonam-avibactam concentration of ≤ 8 mg/L. Aztreonam-avibactam demonstrated potent activity across the evaluated geographic regions and infection types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not required.

Code availability

Not required.

References

  1. Cornely OA, Cisneros JM, Torre-Cisneros J, Rodriguez-Hernandez MJ, Tallon-Aguilar L, Calbo E, Horcajada JP, Queckenberg C, Zettelmeyer U, Arenz D, Rosso-Fernandez CM, Jimenez-Jorge S, Turner G, Raber S, ÒBrien S, Luckey A, Group C-CcRS (2020) Pharmacokinetics and safety of aztreonam/avibactam for the treatment of complicated intra-abdominal infections in hospitalized adults: results from the REJUVENATE study. J Antimicrob Chemother 75(3):618–627

    Article  CAS  Google Scholar 

  2. Brogden RN, Heel RC (1986) Aztreonam. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 31(2):96–130

    Article  CAS  Google Scholar 

  3. Bonomo RA, Burd EM, Conly J, Limbago BM, Poirel L, Segre JA, Westblade LF (2018) Carbapenemase-producing organisms: a global scourge. Clin Infect Dis 66(8):1290–1297

    Article  CAS  Google Scholar 

  4. Bush K, Bradford PA (2020) Epidemiology of beta-lactamase-producing pathogens. Clin Microbiol Rev 33(2):e00047

    Article  CAS  Google Scholar 

  5. Castanheira M, Deshpande LM, Mendes RE, Canton R, Sader HS, Jones RN (2019) Variations in the occurrence of resistance phenotypes and carbapenemase genes among Enterobacteriaceae isolates in 20 years of the SENTRY Antimicrobial Surveillance Program. Open Forum Infect Dis 6(Suppl 1):S23–S33

    Article  CAS  Google Scholar 

  6. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, Cornaglia G, Garau J, Gniadkowski M, Hayden MK, Kumarasamy K, Livermore DM, Maya JJ, Nordmann P, Patel JB, Paterson DL, Pitout J, Villegas MV, Wang H, Woodford N, Quinn JP (2013) Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13(9):785–796

    Article  Google Scholar 

  7. Pitout JDD, Peirano G, Kock MM, Strydom KA, Matsumura Y (2019) The global ascendency of OXA-48-type carbapenemases. Clin Microbiol Rev 33(1):e00102

    Article  Google Scholar 

  8. Boyd SE, Livermore DM, Hooper DC, Hope WW (2020) Metallo-beta-lactamases: structure, function, epidemiology, treatment options, and the development pipeline. Antimicrob Agents Chemother 64(10):e00397

    Article  CAS  Google Scholar 

  9. Wu W, Feng Y, Tang G, Qiao F, McNally A, Zong Z (2019) NDM metallo-beta-lactamases and their bacterial producers in health care settings. Clin Microbiol Rev 32(2):e00115

    Article  CAS  Google Scholar 

  10. Fuhrmeister AS, Jones RN, Sader HS, Rhomberg PR, Mendes RE, Flamm RK, Le J, Denys G, Castanheira M, Deshpande LM, Canton R, Gales AC, Seifert H, Gur D, Diekema DJ, Pfaller MA, Shortridge D, Zervos M, Cormican M, Streit JM, Huband MD, Tsakris A, Woosley LN, Cattoir V, Turnidge JD (2019) Global surveillance of antimicrobial resistance: 20 years of experience with the SENTRY Program. Open Forum Infect Dis 6(Supplement 1):S1–S102

    Article  Google Scholar 

  11. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281

    Article  CAS  Google Scholar 

  12. CLSI (2012) M07-A9. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard: ninth edition. Clinical and Laboratory Standards Institute, Wayne, PA

  13. Singh R, Kim A, Tanudra MA, Harris JJ, McLaughlin RE, Patey S, O’Donnell JP, Bradford PA, Eakin AE (2015) Pharmacokinetics/pharmacodynamics of a beta-lactam and beta-lactamase inhibitor combination: a novel approach for aztreonam/avibactam. J Antimicrob Chemother 70(9):2618–2626

    Article  CAS  Google Scholar 

  14. EUCAST (2021) Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0, January 2021. European Committee on Antimicrobial Susceptibility Testing

  15. Mendes RE, Jones RN, Woosley LN, Cattoir V, Castanheira M (2019) Application of next-generation sequencing for characterization of surveillance and clinical trial isolates: analysis of the distribution of beta-lactamase resistance genes and lineage background in the United States. Open Forum Infect Dis 6(Suppl 1):S69–S78

    Article  CAS  Google Scholar 

  16. Mendes RE, Doyle TB, Streit JM, Arhin FF, Sader HS, Castanheira M (2021) Investigation of mechanisms responsible for decreased susceptibility of aztreonam/avibactam activity in clinical isolates of Enterobacterales collected in Europe, Asia and Latin America in 2019. J Antimicrob Chemother 76(11):2833–2838

    Article  CAS  Google Scholar 

  17. Sonnevend A, Ghazawi A, Darwish D, Barathan G, Hashmey R, Ashraf T, Rizvi TA, Pal T (2020) In vitro efficacy of ceftazidime-avibactam, aztreonam-avibactam and other rescue antibiotics against carbapenem-resistant Enterobacterales from the Arabian Peninsula. Int J Infect Dis 99:253–259

    Article  CAS  Google Scholar 

  18. Alm RA, Johnstone MR, Lahiri SD (2015) Characterization of Escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: role of a novel insertion in PBP3. J Antimicrob Chemother 70(5):1420–1428

    Article  CAS  Google Scholar 

  19. Estabrook M, Kazmierczak KM, Wise M, Arhin FF, Stone GG, Sahm DF (2021) Molecular characterization of clinical isolates of Enterobacterales with elevated MIC values for aztreonam-avibactam from the INFORM global surveillance study, 2012–2017. J Glob Antimicrob Resist 24:316–320

    Article  Google Scholar 

  20. Sadek M, Ruppe E, Habib A, Zahra R, Poirel L, Nordmann P (2021) International circulation of aztreonam/avibactam-resistant NDM-5-producing Escherichia coli isolates: successful epidemic clones. J Glob Antimicrob Resist 27:326–328

    Article  Google Scholar 

  21. Sadek M, Juhas M, Poirel L, Nordmann P (2020) Genetic features leading to reduced susceptibility to aztreonam-avibactam among metallo-beta-lactamase-producing Escherichia coli isolates. Antimicrob Agents Chemother 64(12):e01659

    Article  CAS  Google Scholar 

  22. Castanheira M, Doyle TB, Deshpande LM, Mendes RE, Sader HS (2021) Activity of ceftazidime/avibactam, meropenem/vaborbactam and imipenem/relebactam against carbapenemase-negative carbapenem-resistant Enterobacterales isolates from US hospitals. Int J Antimicrob Agents 58(5):106439

    Article  CAS  Google Scholar 

  23. WHO (2017) Central Asian and Eastern European surveillance of antimicrobial resistance. World Health Organization, Copenhagen, Denmark

    Google Scholar 

  24. ECDC (2019) Surveillance of antimicrobial resistance in Europe. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). European Centre for Disease Prevention and Control, Stockholm, Sweden

  25. Fursova NK, Astashkin EI, Knyazeva AI, Kartsev NN, Leonova ES, Ershova ON, Alexandrova IA, Kurdyumova NV, Sazikina SY, Volozhantsev NV, Svetoch EA, Dyatlov IA (2015) The spread of bla OXA-48 and bla OXA-244 carbapenemase genes among Klebsiella pneumoniae, Proteus mirabilis and Enterobacter spp. isolated in Moscow. Russia. Ann Clin Microbiol Antimicrob 14:46

    Article  Google Scholar 

  26. Protonotariou E, Meletis G, Chatzopoulou F, Malousi A, Chatzidimitriou D, Skoura L (2019) Emergence of Klebsiella pneumoniae ST11 co-producing NDM-1 and OXA-48 carbapenemases in Greece. J Glob Antimicrob Resist 19:81–82

    Article  Google Scholar 

  27. Sader HS, Carvalhaes CG, Duncan LR, Flamm RK, Shortridge D (2020) Susceptibility trends of ceftolozane/tazobactam and comparators when tested against European Gram-negative bacterial surveillance isolates collected during 2012–18. J Antimicrob Chemother 75(10):2907–2913

    Article  CAS  Google Scholar 

  28. Suzuk Yildiz S, Simsek H, Bakkaloglu Z, Numanoglu Cevik Y, Hekimoglu CH, Kilic S, Alp Mese E, Calisma UKS, G, (2021) The epidemiology of carbapenemases in Escherichia coli and Klebsiella pneumoniae isolated in 2019 in Turkey. Mikrobiyol Bul 55(1):1–16

    Article  Google Scholar 

  29. Weiner-Lastinger LM, Abner S, Edwards JR, Kallen AJ, Karlsson M, Magill SS, Pollock D, See I, Soe MM, Walters MS, Dudeck MA (2020) Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect Control Hosp Epidemiol 41(1):1–18

    Article  Google Scholar 

  30. Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ (2021) Infectious Diseases Society of America guidance on the treatment of extended-spectrum beta-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Clin Infect Dis 72(7):e169–e183

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all participants of the SENTRY Antimicrobial Surveillance Program for their work in providing isolates. Editorial support was provided by Amy Chen and Judy Oberholser at JMI Laboratories and was funded by Pfizer.

Funding

This study was supported by Pfizer Inc. Helio S. Sader, Rodrigo E. Mendes, S. J. Ryan Arends, Cecilia G. Carvalhaes, and Mariana Castanheira are employees of JMI Laboratories, which was a paid consultant to Pfizer in connection with the development of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helio S. Sader.

Ethics declarations

JMI Laboratories contracted to perform services in 2018–2021 for Achaogen, Inc., Affinity Biosensors, Albany College of Pharmacy and Health Sciences, Allecra Therapeutics, Allergan, Amicrobe Advanced Biomaterials, Inc., American Proficiency Institute, AmpliPhi Biosciences Corp., Amplyx Pharma, Antabio, Arietis Corp., Arixa Pharmaceuticals, Inc., Artugen Therapeutics USA, Inc., Astellas Pharma Inc., Athelas, Becton, Basilea Pharmaceutica Ltd., Bayer AG, Becton, Beth Israel Deaconess Medical Center, BIDMC, bioMerieux, Inc., bioMerieux SA, BioVersys Ag, Boston Pharmaceuticals, Bugworks Research Inc., CEM-102 Pharmaceuticals, Cepheid, Cidara Therapeutics, Inc., Cipla, Contrafect, Cormedix Inc., Crestone, Inc., Curza, CXC7, DePuy Synthes, Destiny Pharma, Dickinson and Company, Discuva Ltd., Dr. Falk Pharma GmbH, Emery Pharma, Entasis Therapeutics, Eurofarma Laboratorios SA, Fedora Pharmaceutical, F. Hoffmann-La Roche Ltd., Fimbrion Therapeutics, US Food and Drug Administration, Fox Chase Chemical Diversity Center, Inc., Gateway Pharmaceutical LLC, GenePOC Inc., Geom Therapeutics, Inc., GlaxoSmithKline plc, Guardian Therapeutics, Hardy Diagnostics, Harvard University, Helperby, HiMedia Laboratories, ICON plc, Idorsia Pharmaceuticals Ltd., IHMA, Iterum Therapeutics plc, Janssen Research & Development, Johnson & Johnson, Kaleido Biosciences, KBP Biosciences, Laboratory Specialists, Inc., Luminex, Matrivax, Mayo Clinic, Medpace, Meiji Seika Pharma Co., Ltd., Melinta Therapeutics, Inc., Menarini, Merck & Co., Inc., Meridian Bioscience Inc., Micromyx, Microchem Laboratory, MicuRx Pharmaceutics, Inc., Mutabilis Co., N8 Medical, Nabriva Therapeutics plc, National Institutes of Health, NAEJA-RGM, National University of Singapore, North Bristol NHS Trust, Novartis AG, Novome Biotechnologies, Oxoid Ltd., Paratek Pharmaceuticals, Inc., Pfizer, Inc., Pharmaceutical Product Development, LLC, Polyphor Ltd., Prokaryotics Inc., QPEX Biopharma, Inc., Ra Pharmaceuticals, Inc., Rhode Island Hospital, RIHML, Roche, Roivant Sciences, Ltd., Safeguard Biosystems, Salvat, Scynexis, Inc., SeLux Diagnostics, Inc., Shionogi and Co., Ltd., SinSa Labs, Specific Diagnostics, Spero Therapeutics, Summit Pharmaceuticals International Corp., SuperTrans Medical LT, Synlogic, T2 Biosystems, Taisho Pharmaceutical Co., Ltd., TenNor Therapeutics Ltd., Tetraphase Pharmaceuticals, The Medicines Company, The University of Queensland, Theravance Biopharma, Thermo Fisher Scientific, Tufts Medical Center, Universite de Sherbrooke, University of Colorado, University of Southern California-San Diego, University of Iowa, University of Iowa Hospitals and Clinics, University of North Texas Health Science Center, University of Wisconsin, UNT System College of Pharmacy, URMC, UT Southwestern, VenatoRx, Viosera Therapeutics, Vyome Therapeutics Inc., Wayne State University, Wockhardt, Yukon Pharmaceuticals, Inc., Zai Lab, and Zavante Therapeutics, Inc. There are no speakers’ bureaus or stock options to declare.

Ethical approval.

Not required.

Consent to participate

Not required.

Consent for publication

Not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sader, H.S., Mendes, R.E., Arends, S.J.R. et al. Antimicrobial activities of aztreonam-avibactam and comparator agents tested against Enterobacterales from European hospitals analysed by geographic region and infection type (2019–2020). Eur J Clin Microbiol Infect Dis 41, 477–487 (2022). https://doi.org/10.1007/s10096-022-04400-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-022-04400-z

Keywords

Navigation