Skip to main content

Advertisement

Log in

Clinical outcome from hematopoietic cell transplant patients with bloodstream infection caused by carbapenem-resistant P. aeruginosa and the impact of antimicrobial combination in vitro

  • Brief Report
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Bloodstream infection (BSI) caused by carbapenem-resistant P. aeruginosa (CRPA) has high mortality in hematopoietic stem cell transplant (HSCT) recipients. We performed MIC, checkerboard, time-kill assay, PFGE, PCR, and whole genome sequence and described the clinical outcome through Epi Info comparing the antimicrobial combination in vitro. Mortality was higher in BSI caused by CRPA carrying the lasB virulence gene. The isolates were 97% resistant to meropenem displaying synergistic effect to 57% in combination with colistin. Seventy-three percent of the isolates harbored blaSPM-1 and Tn4371 and belonged to ST277. The synergistic effect in vitro with meropenem with colistin appeared to be a better therapeutic option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Gonçalves IR, Dantas RCC, Ferreira ML, Batistão DWF, Gontijo-Filho PP, Ribas RM (2017) Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation. Braz J Microbiol 48(2):211–217

    Article  Google Scholar 

  2. Andria N, Henig O, Kotler O, Domchenko A, Oren I, Zuckerman T, Ofran Y, Fraser D, Paul M (2015) Mortality burden related to infection with carbapenem-resistant gram-negative bacteria among hematological cancer patients: a retrospective cohort study. J Antimicrob Chemother 70:3146–3153

    Article  CAS  Google Scholar 

  3. Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, Raad II, Rolston KV, Young JA, Wingard JR (2011) Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 Update by the Infectious Diseases Society of America. Clin Infect Dis 52(4):e56–e93

    Article  Google Scholar 

  4. Peña C, Cabot G, Gómez-Zorrilla S, Zamorano L, Ocampo-Sosa A, Murillas J, Almirante B, Pomar V, Aguilar M, Granados A, Calbo E, Rodríguez-Baño J, Rodríguez-López F, Tubau F, Martínez-Martínez L, Oliver A (2015) Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. Clin Infect Dis 60:539–548

    Article  Google Scholar 

  5. El-Solh AA, Hattemer A, Hauser AR, Alhajhusain A, Vora H (2012) Clinical outcomes of type III Pseudomonas aeruginosa bacteremia. Crit Care Med 40:1157–1163

    Article  Google Scholar 

  6. Veesenmeyer JL, Hauser AR, Lisboa T, Rello J (2009) Pseudomonas aeruginosa virulence and therapy: evolving translational strategies. Crit Care Med 37:1777–1786

    Article  Google Scholar 

  7. El Zowalaty ME, Al Thani AA, Webster TJ, El Zowalaty AE, Schweizer HP, Nasrallah GK, Marei HE, Ashour HM (2015) Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol 10(10):1683–1706

    Article  Google Scholar 

  8. Peña C, Suarez C, Ocampo-Sosa A, Murillas J, Almirante B, Pomar V, Aguilar M, Granados A, Calbo E, Rodríguez-Baño J, Rodríguez F, Tubau F, Oliver A, Martínez-Martínez L (2013) Effect of adequate single-drug versus combination antimicrobial therapy on mortality in Pseudomonas aeruginosa bloodstream infections. A post hoc analysis of a prospective cohort. Clin Infect Dis 57:208–16

    Article  Google Scholar 

  9. Zusman O, Avni T, Leibovici L, Adler A, Friberg L, Stergiopoulou T, Carmeli Y, Paul M (2013) Systematic review and meta-analysis of in vitro synergy of polymyxins and carbapenems. Antimicrob Agents Chemother 57(10):5104–11

    Article  CAS  Google Scholar 

  10. Horan TC, Andrus M, Dudeck MA (2008) CDC/NHSN surveillance definition of health care– associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 36:309–332

    Article  Google Scholar 

  11. Rhee JY, Kwon KT, Ki HK, Shin SY, Jung DS, Chung DR, Ha Song JH (2009) Scoring Systems for prediction of mortality in patients with intensive care unit acquired sepsis: a comparison of the Pitt bacteremia score and the Acute Physiology and chronic health evaluation II scoring systems. Shock 31(2):146–50

    Article  Google Scholar 

  12. Clinical and Laboratory Standard Institute (2014) Performance standards for antimicrobial susceptibility testing. Nineteenth informational supplement. CLSI document M100 S19. CLSI, Wayne

  13. Eliopoulos GM, Moellering RC (1996) In: Antimicrobial combinations. Antibiotic in Laboratory Medicine (4th edn). Lorian V, Williams and Wilkins, Baltimore, p 330–96

  14. Petersen PJ, Labthavikul P, Jones CH, Bradford PA (2006) In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by checkerboard and time-kill kinetic analysis. J Antimicrob Chemother 57(3):573–576

    Article  CAS  Google Scholar 

  15. Pillai SK, Moellering RC, Eliopoulos GM (2005) In: Lorian V (ed) Antimicrobial combinations. Antibiotics in laboratory medicine, 5th edn. Lippincott Williams and Wilkins, Philadelphia

  16. Mendes RE, Kiyota KA, Monteiro J, Castanheira M, Andrade SS, Gales AC, Pignatari AC, Tufik S (2007) Rapid detection and identification of Metallo-β- lactamase- encoding genes by multiplex real time PCR assay and melt curve analysis. J Clin Microbiol 45(2):544–547

    Article  CAS  Google Scholar 

  17. Shi H, Trinh Q, Xu W, Zhai B, Luo Y, Huang K (2012) A universal primer multiplex PCR method for typing of toxinogenic Pseudomonas aeruginosa. Appl Microbiol Biotechnol 95:1579–1587

    Article  CAS  Google Scholar 

  18. Assefa S, Keane TM, Otto TD, Newbold C, Berriman M (2009) ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics 25:1968–1969

    Article  CAS  Google Scholar 

  19. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069

    Article  CAS  Google Scholar 

  20. Wang L, Wang Y, Fan X, Tang W, Hu J (2015) Prevalence of resistant gram-negative bacilli in bloodstream infection in febrile neutropenia patients undergoing hematopoietic stem cell transplantation: a single center retrospective cohort study. Medicine 94(45):e1931

    Article  CAS  Google Scholar 

  21. Chaves L, Tomich LM, Salomão M, Leite GC, Ramos J, Martins RR, Rizek C, Neves P, Batista MV, Amigo U, Guimaraes T, Levin AS, Costa SF (2017) High mortality of bloodstream infection outbreak caused by carbapenem-resistant P. aeruginosa producing SPM-1 in a bone marrow transplant unit. J Med Microbiol 66:1722–9

    Article  CAS  Google Scholar 

  22. Heidenreich D, Kreil S, Nolte F, Hofmann WK, Miethke T, Klein SA (2017) Multidrug-resistant organisms in allogeneic hematopoietic cell transplantation. Hematology 98(5):485–492

    CAS  Google Scholar 

  23. Mellouli A, Chebbi Y, El Fatmi R, Raddaoui A, Lakhal A, Torjmane L, Ben Abdeljelil N, Belloumi D, Ladeb S, Ben Othmen T, Achour W (2021) Multidrug resistant bacteremia in hematopoietic stem cell transplant recipients. Tunis Med 99(2):269–276

    PubMed  Google Scholar 

  24. Hu Y, Li L, Li W, Xu H, He P, Yan X, Dai H (2013) Combination antibiotic therapy versus monotherapy for Pseudomonas aeruginosa bacteraemia: a meta-analysis of retrospective and prospective studies. Int J Antimicrob Agents 42:492–496

    Article  CAS  Google Scholar 

  25. He W, Kaniga K, Lynch AS, Flamm RK, Davies TA (2012) In vitro Etest synergy of doripenem with amikacin, colistin, and levofloxacin against Pseudomonas aeruginosa with defined carbapenem resistance mechanisms as determined by the Etest method. Diagn Microbiol Infect Dis 74:417–419

    Article  CAS  Google Scholar 

  26. Mikhail S, Singh NB, Kebriaei R, Rice SA, Stamper KC, Castanheira M, Rybak MJ (2019) Evaluation of the synergy of ceftazidime-avibactam in combination with meropenem, amikacin, aztreonam, colistin, or fosfomycin against well-characterized multidrug-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 63(8):e00779-19

    Article  CAS  Google Scholar 

  27. Pereira SG, Rosa AC, Cardoso O (2015) Virulence factors as predictive tools for drug resistance in Pseudomonas aeruginosa. Virulence 6(5):1–4

    CAS  Google Scholar 

  28. Gómez-Zorrilla S, Juan C, Cabot G, Camoez M, Tubau F, Oliver A, Dominguez MA, Ariza J, Peña C (2016) Impact of multidrug resistance on the pathogenicity of Pseudomonas aeruginosa: in vitro and in vivo studies. Int J Antimicrob Agents 47(5):368–374

    Article  Google Scholar 

  29. Silva FM, Carmo MS, Silbert S, Gales AC (2011) SPM-1-Producing Pseudomonas aeruginosa: analysis of the ancestor relationship using multilocus sequence typing, pulsed-field gel electrophoresis, and automated ribotyping. Microbiol Drug Resist 17(2):215–220

    Article  CAS  Google Scholar 

  30. Hopkins KL, Meunier D, Findlay J, Mustafa N, Parsons H, Pike R, Wright L, Woodford N (2016) SPM-1 metallo-β-lactamase-producing Pseudomonas aeruginosa ST277 in the UK. J Med Microbiol 65(7):696–697

    Article  Google Scholar 

  31. Estepa V, Rojo-Bezares B, Azcona-Gutiérrez JM, Olarte I, Torres C, Sáenz Y (2017) Caracterización de mecanismos de resistencia a carbapenémicos en aislados clínicos de Pseudomonas aeruginosa en un hospital español. Enferm Infecc Microbiol Clin 35:141–147

    Article  Google Scholar 

  32. Silveira MC, Albano RM, Asensi MD, Carvalho-Assef AP (2016) Description of genomic islands associated to the multidrug-resistant Pseudomonas aeruginosa clone ST277. Infect Genet Evol 42:60–65

    Article  CAS  Google Scholar 

Download references

Funding

Internal funding from the University of São Paulo, Brazil, and the National Council of Technological and Scientific Development (CNPQ), Brazil, supported this study.

Author information

Authors and Affiliations

Authors

Contributions

JR assembled the data and drafted the manuscript. GCL and CR helped in MIC determination and synergy; RCR and SS were responsible for whole genome sequencing and bioinformatics analysis; TG, ASL, and VR helped with the draft of manuscript; and SFC designed and supervised the study, did analysis and interpretation, and drafted the manuscript. All authors have read, contributed, and approved the final manuscript.

Corresponding author

Correspondence to Gleice Leite.

Ethics declarations

Ethics approval

These experiments were approved by the Ethical Committee of Hospital das Clinicas of University of Sao Paulo and received approval by CONEP (National Ethics Commission), Brazil.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, J.F., Leite, G., Martins, R.C.R. et al. Clinical outcome from hematopoietic cell transplant patients with bloodstream infection caused by carbapenem-resistant P. aeruginosa and the impact of antimicrobial combination in vitro. Eur J Clin Microbiol Infect Dis 41, 313–317 (2022). https://doi.org/10.1007/s10096-021-04361-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-021-04361-9

Keywords

Navigation