Skip to main content
Log in

Impact of 24/7 loading of blood culture bottles in a new automated incubator on the diagnosis of bloodstream infections

  • Brief Report
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Blood culturing (BC) remains the gold standard for bloodstream diagnosis but its workflow is slow. We aimed reducing this time by implementing a new automated incubator with a 24/7 BC workflow. With this new strategy, time to incubation was shorter (1.52 h vs 6.82 h), positivity rates were higher (10.6% vs 8.9%, p<0.05), and the number of BSI diagnostics increased (16.1% vs 13.8% patients and 2.3 vs 1.9 density episode per 1000 hospital days). Our results show that implementing automatic loading of BC bottles with a 24/7 strategy not only shortened time to diagnosis but significantly increased the BSI diagnosis rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Goto M, Al-Hasan MN (2013) Overall burden of bloodstream infection and nosocomial bloodstream infection in North America and Europe. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 19:501–509. https://doi.org/10.1111/1469-0691.12195

    Article  CAS  Google Scholar 

  2. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S et al (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34:1589–1596. https://doi.org/10.1097/01.CCM.0000217961.75225.E9

    Article  PubMed  Google Scholar 

  3. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med 45:486–552. https://doi.org/10.1097/CCM.0000000000002255

    Article  PubMed  Google Scholar 

  4. Lee C-R, Cho IH, Jeong BC, Lee SH (2013) Strategies to minimize antibiotic resistance. Int J Environ Res Public Health 10:4274–4305. https://doi.org/10.3390/ijerph10094274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jonasson E, Matuschek E, Kahlmeter G (2020) The EUCAST rapid disc diffusion method for antimicrobial susceptibility testing directly from positive blood culture bottles. J Antimicrob Chemother 75:968–978. https://doi.org/10.1093/jac/dkz548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thorpe TC, Wilson ML, Turner JE, DiGuiseppi JL, Willert M, Mirrett S et al (1990) BacT/Alert: an automated colorimetric microbial detection system. J Clin Microbiol 28:1608–1612

    Article  CAS  Google Scholar 

  7. Tornimbene B, Eremin S, Escher M, Griskeviciene J, Manglani S, Pessoa-Silva CL (2018) WHO global antimicrobial resistance surveillance system early implementation 2016-17. Lancet Infect Dis 18:241–242. https://doi.org/10.1016/S1473-3099(18)30060-4

    Article  PubMed  Google Scholar 

  8. Kerremans JJ, van der Bij AK, Goessens W, Verbrugh HA, Vos MC (2009) Immediate incubation of blood cultures outside routine laboratory hours of operation accelerates antibiotic switching. J Clin Microbiol 47:3520–3523. https://doi.org/10.1128/JCM.01092-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schifman RB, Strand CL, Braun E, Louis-Charles A, Spark RP, Fried ML (1991) Solitary blood cultures as a quality assurance indicator. Qual Assur Util Rev Off J Am Coll Util Rev Phys 6:132–137. https://doi.org/10.1177/0885713x9100600406

    Article  CAS  Google Scholar 

  10. Doern GV, Carroll KC, Diekema DJ, Garey KW, Rupp ME, Weinstein MP et al (2019) Practical guidance for clinical microbiology laboratories: a comprehensive update on the problem of blood culture contamination and a discussion of methods for addressing the problem. Clin Microbiol Rev 33:CMR.00009-19, e00009-19. https://doi.org/10.1128/CMR.00009-19

    Article  Google Scholar 

  11. Adamik M, Hutchins A, Mangilit J, Katzin B, Totty H, Deol P (2020) Effect of delayed entry on performance of the BACT/ALERT FAN PLUS bottles in the BACT/ALERT VIRTUO blood culture system. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. https://doi.org/10.1007/s10096-020-04042-z

  12. Amarsy-Guerle R, Mougari F, Jacquier H, Oliary J, Benmansour H, Riahi J et al (2015) High medical impact of implementing the new polymeric bead-based BacT/ALERT® FAPlus and FNPlus blood culture bottles in standard care. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol 34:1031–1037. https://doi.org/10.1007/s10096-015-2319-8

    Article  CAS  Google Scholar 

  13. Kirn TJ, Mirrett S, Reller LB, Weinstein MP (2014) Controlled clinical comparison of BacT/alert FA plus and FN plus blood culture media with BacT/alert FA and FN blood culture media. J Clin Microbiol 52:839–843. https://doi.org/10.1128/JCM.03063-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jacobs MR, Mazzulli T, Hazen KC, Good CE, Abdelhamed AM, Lo P et al (2017) Multicenter clinical evaluation of BacT/alert virtuo blood culture system. J Clin Microbiol 55:2413–2421. https://doi.org/10.1128/JCM.00307-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wilson ML (2007) Clinical and Laboratory Standards Institute. Principles and procedures for blood cultures: approved guideline. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  16. Saito T, Iinuma Y, Takakura S, Nagao M, Matsushima A, Shirano M et al (2009) Delayed insertion of blood culture bottles into automated continuously monitoring blood culture systems increases the time from blood sample collection to the detection of microorganisms in bacteremic patients. J Infect Chemother Off J Jpn Soc Chemother 15:49–53. https://doi.org/10.1007/s10156-008-0664-6

    Article  Google Scholar 

  17. Lemming L, Holt HM, Petersen IS, Østergaard C, Bruun B (2004) Bactec 9240 blood culture system: to preincubate at 35 °C or not? Clin Microbiol Infect 10:1089–1091. https://doi.org/10.1111/j.1469-0691.2004.00969.x

    Article  CAS  PubMed  Google Scholar 

  18. Lee D-H, Koh E-H, Choi S-R, Kim S (2013) Growth dynamics of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa as a function of time to detection in BacT/alert 3D blood culture bottles with various preincubation conditions. Ann Lab Med 33:406–409. https://doi.org/10.3343/alm.2013.33.6.406

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pautas C, Sbidian E, Hicheri Y, Bastuji-Garin S, Bretagne S, Corbel C et al (2013) A new workflow for the microbiological diagnosis of febrile neutropenia in patients with a central venous catheter. J Antimicrob Chemother 68:943–946. https://doi.org/10.1093/jac/dks462

    Article  CAS  PubMed  Google Scholar 

  20. Collazos-Blanco A, Pérez-García F, Sánchez-Carrillo C, de Egea V, Muñoz P, Bouza E (2019) Estimation of missed bloodstream infections without the third blood culture set: a retrospective observational single-centre study. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 25:469–473. https://doi.org/10.1016/j.cmi.2018.06.024

    Article  CAS  Google Scholar 

  21. Dargère S, Parienti J-J, Roupie E, Gancel P-E, Wiel E, Smaiti N et al (2014) Unique blood culture for diagnosis of bloodstream infections in emergency departments: a prospective multicentre study. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 20:O920–O927. https://doi.org/10.1111/1469-0691.12656

    Article  Google Scholar 

  22. Kang C-M, Chen X-J, Chih C-C, Hsu C-C, Chen P-H, Lee TF et al (2020) Rapid identification of bloodstream bacterial and fungal pathogens and their antibiotic resistance determinants from positively flagged blood cultures using the BioFire FilmArray blood culture identification panel. J Microbiol Immunol Infect Wei Mian Yu Gan Ran Za Zhi. https://doi.org/10.1016/j.jmii.2020.03.018

  23. De Angelis G, Posteraro B, Menchinelli G, Liotti FM, Spanu T, Sanguinetti M (2019) Antimicrobial susceptibility testing of pathogens isolated from blood culture: a performance comparison of Accelerate PhenoTM and VITEK® 2 systems with the broth microdilution method. J Antimicrob Chemother 74:i24–i31. https://doi.org/10.1093/jac/dky532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank technicians and biologists of the microbiology laboratory and of the emergency laboratory and all clinicians of Lariboisière and Fernand Widal Hospitals.

Code availability

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gauthier Péan de Ponfilly.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Péan de Ponfilly, G., Benmansour, H., Manda, V. et al. Impact of 24/7 loading of blood culture bottles in a new automated incubator on the diagnosis of bloodstream infections. Eur J Clin Microbiol Infect Dis 40, 2639–2643 (2021). https://doi.org/10.1007/s10096-021-04283-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-021-04283-6

Keywords

Navigation