Skip to main content

Advertisement

Log in

Extensively drug-resistant Acinetobacter baumannii carrying blaOXA-23-like and armA in a hospital after an intervention in the intensive care unit which ended a long-standing endemicity

  • Brief Report
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The aim of the study was to evaluate for a long time the effectiveness of an intervention designed to reduce carbapenem-resistant Acinetobacter baumannii (CRAB) and its impact on colistin usage in the ICU of a tertiary hospital in Spain. The rate of carbapenem resistance declined drastically during the period of study (2015 to 2018), from 93.57 to 74.65%, especially in the ICU. A significant decrease in colistin usage, from 1.16 to 0.39 DOTs, was observed. Forty-nine CRAB isolates recovered nearly 1 year after starting the intervention were characterized. Most of them were recovered from patients admitted in wards other than ICU and were extensively drug-resistant, carried blaOXA-23-like and armA, and belonged to ST218. Implementation of control measures is crucial to CRAB control in ICUs but must be extended to all wards in order to eradicate CRAB from hospitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Dijkshoorn L, Nemec A, Seifert H (2007) An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol 5:939–951. https://doi.org/10.1038/nrmicro1789

    Article  CAS  PubMed  Google Scholar 

  2. Merino M, Poza M, Roca I, Barba MJ, Sousa MD, Vila J et al (2014) Nosocomial outbreak of a multiresistant Acinetobacter baumannii expressing OXA-23 carbapenemase in Spain. Microb Drug Resist 20:259–263. https://doi.org/10.1089/mdr.2013.0127

    Article  CAS  PubMed  Google Scholar 

  3. Mosqueda N, Espinal P, Cosgaya C, Viota S, Plasencia V, Álvarez-Lerma F et al (2013) Globally expanding carbapenemase finally appears in Spain: nosocomial outbreak of Acinetobacter baumannii producing. Antimicrob Agents Chemother 57:5155–5157. https://doi.org/10.1128/AAC.01486-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Espinal P, Macià MD, Roca I, Gato E, Ruíz E, Fernández-Cuenca F et al (2013) First report of an OXA-23 carbapenemase-producing Acinetobacter baumannii clinical isolate related to Tn2006 in Spain. Antimicrob Agents Chemother 57:589–591. https://doi.org/10.1128/AAC.01157-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nowak J, Zander E, Stefanik D, Higgins PG, Roca I, Vila J et al (2017) High incidence of pandrug-resistant Acinetobacter baumannii isolates collected from patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet clinical trial. J Antimicrob Chemother 72:3277–3282. https://doi.org/10.1093/jac/dkx322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gavaldà L, Soriano AM, Cámara J, Gasull R, Arch O, Shaw E et al (2016) Control of endemic extensively drug-resistant Acinetobacter baumannii with a cohorting policy and cleaning procedures based on the 1 room, 1 wipe approach. Am J Infect Control 44:520–524. https://doi.org/10.1016/j.ajic.2015.11.036

    Article  PubMed  Google Scholar 

  7. Thatrimontrichai A, Pannaraj PS, Janjindamai W, Dissaneevate S, Maneenil G, Apisarnthanarak A (2020) Intervention to reduce carbapenem-resistant Acinetobacter baumannii in a neonatal intensive care unit. Infect Control Hosp Epidemiol:1–6. https://doi.org/10.1017/ice.2020.35

  8. Dahdouh E, Gómez-Gil R, Pacho S, Mingorance J, Daoud Z, Suárez M (2017) Clonality, virulence determinants, and profiles of resistance of clinical Acinetobacter baumannii isolates obtained from a Spanish hospital. PLoS One 12:1–18. https://doi.org/10.1371/journal.pone.0176824

    Article  CAS  Google Scholar 

  9. Ruiz M, Marti S, Fernández-Cuenca F, Pascual A, Vila J (2007) High prevalence of carbapenem-hydrolysing oxacillinases in epidemiologically related and unrelated Acinetobacter baumannii clinical isolates in Spain. Clin Microbiol Infect 13:1192–1198. https://doi.org/10.1111/j.1469-0691.2007.01825.x

    Article  CAS  PubMed  Google Scholar 

  10. Lowe M, Ehlers MM, Ismail F, Peirano G, Becker PJ, Pitout JDD et al (2018) Acinetobacter baumannii: epidemiological and beta-lactamase data from two tertiary academic hospitals in Tshwane, South Africa. Front Microbiol 9:1–9

    Article  Google Scholar 

  11. Escudero D, Cofiño L, Forcelledo L, Quindós B, Calleja C, Martín L (2017) Control of an Acinetobacter baumannii multidrug resistance endemic in the ICU. Recalling the obvious. Med Intensiva 41:497–499

    Article  CAS  Google Scholar 

  12. EUCAST (2016) Recommendations for MIC determination of colistin (polymyxin E) as recommended by the joint CLSI-EUCAST Polymyxin Breakpoints Working Group

  13. Seifert H, Dolzani L, Bressan R, Van Der Reijden T, Van Strijen B, Stefanik D et al (2005) Standardization and interlaboratory reproducibility assessment of pulsed-field gel electrophoresis-generated fingerprints of Acinetobacter baumannii. J Clin Microbiol 43:4328–4335. https://doi.org/10.1128/JCM.43.9.4328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bartual SG, Seifert H, Hippler C, Domínguez MA, Wisplinghoff H, Rodríguez-Valera F (2005) Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J Clin Microbiol 43:4382–4390. https://doi.org/10.1128/JCM.43.9.4382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Villar M, Cano M, Gato E, Garnacho-Montero J, Cisneros J, Alegría C et al (2014) Epidemiologic and clinical impact of Acinetobacter baumannii colonization and infection: a reappraisal. Medicine (Baltimore) 93:202–210. https://doi.org/10.1097/MD.0000000000000036

    Article  Google Scholar 

  16. López-Lozano JM, Lawes T, Nebot C, Beyaert A, Bertrand X, Hocquet D et al (2019) A nonlinear time-series analysis approach to identify thresholds in associations between population antibiotic use and rates of resistance. Nat Microbiol 4:1160–1172. https://doi.org/10.1038/s41564-019-0410-0

    Article  CAS  PubMed  Google Scholar 

  17. Lemos E, de la Hoz F, Einarson T, McGhan W, Quevedo E, Castañeda C et al (2014) Carbapenem resistance and mortality in patients with Acinetobacter baumannii infection: systematic review and meta-analysis. Clin Microbiol Infect 20:416–423. https://doi.org/10.1111/1469-0691.12363

    Article  CAS  PubMed  Google Scholar 

  18. Tomaschek F, Higgins PG, Stefanik D, Wisplinghoff H, Seifert H (2016) Head-to-head comparison of two multi-locus sequence typing (MLST) schemes for characterization of Acinetobacter baumannii outbreak and sporadic isolates. PLoS One 11:1–10. https://doi.org/10.1371/journal.pone.0153014

    Article  CAS  Google Scholar 

  19. Villalón P, Valdezate S, Medina-Pascual MJ, Rubio V, Vindel A, Saez-Nieto JA (2011) Clonal diversity of nosocomial epidemic Acinetobacter baumannii strains isolated in Spain. J Clin Microbiol 49:875–882. https://doi.org/10.1128/JCM.01026-10

    Article  PubMed  PubMed Central  Google Scholar 

  20. Villalón P, Valdezate S, Cabezas T, Garrido N, Vindel A, Medina-pascual MJ et al (2015) Endemic and epidemic Acinetobacter baumannii clones: a twelve-year study in a tertiary care hospital. BMC Microbiol 15:1–9. https://doi.org/10.1186/s12866-015-0383-y

    Article  Google Scholar 

  21. Grosso F, Quinteira S, Peixe L (2011) Understanding the dynamics of imipenem- resistant Acinetobacter baumannii lineages within Portugal. Clin Microbiol Infect 17:1275–1279. https://doi.org/10.1111/j.1469-0691.2011.03469.x

    Article  CAS  PubMed  Google Scholar 

  22. Villalón P, Sáez-Nieto JA, Carrasco G, Medina-Pascual MJ, Garrido N, Valdezate S (2019) Dynamics of a sporadic nosocomial Acinetobacter calcoaceticus – Acinetobacter baumannii complex population. Front Microbiol 10:1–8. https://doi.org/10.3389/fmicb.2019.00593

    Article  Google Scholar 

  23. Guerrero-Lozano I, Fernández-Cuenca F, Galán-Sánchez F, Egea P, Rodríguez-Iglesias M, Pascual Á (2015) Description of the OXA-23 β-lactamase gene located within Tn2007 in a clinical isolate of Acinetobacter baumannii from Spain. Microb Drug Resist 21:215–217. https://doi.org/10.1089/mdr.2014.0155

    Article  CAS  PubMed  Google Scholar 

  24. Palmieri M, D’Andrea MM, Pelegrin AC, Perrot N, Mirande C, Blanc B et al (2020) Abundance of colistin-resistant, OXA-23- and ArmA-producing Acinetobacter baumannii belonging to international clone 2 in Greece. Front Microbiol. https://doi.org/10.3389/fmicb.2020.00668

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Fernández.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Lucas, C., Rodicio, M.R., Vázquez, X. et al. Extensively drug-resistant Acinetobacter baumannii carrying blaOXA-23-like and armA in a hospital after an intervention in the intensive care unit which ended a long-standing endemicity. Eur J Clin Microbiol Infect Dis 40, 385–389 (2021). https://doi.org/10.1007/s10096-020-04009-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-020-04009-0

Keywords

Navigation