Skip to main content

Advertisement

Log in

Direct detection of Strongyloides infection via molecular and antigen detection methods

  • Review
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Laboratory diagnosis of Strongyloides infections can be grouped into direct and indirect detection methods, and a combination of the two methods is often needed to reach an accurate and timely diagnosis. This review focuses on non-conventional direct detection via molecular and antigen detection assays. Conventional PCR is the most commonly used molecular diagnostic for Strongyloides. Real-time PCR is accurate and highly sensitive for quantitative and qualitative analysis. Meanwhile, PCR-RFLP can efficiently distinguish human and dog isolates of S. stercoralis, S. fuelleborni (from monkey), and S. ratti (from rodent). Loop-mediated isothermal amplification (LAMP) amplifies DNA isothermally with high specificity, efficiency, and rapidity, and has potential for point-of-care (POC) translation. As for antigen detection assay, coproantigen detection ELISAs for strongyloidiasis traditionally relied on raising rabbit polyclonal antibodies against the parasite antigens for use as capture or detection reagents. Subsequently, hybridoma technology using animals has enabled the discovery of monoclonal antibodies specific to Strongyloides antigens and was utilised to develop antigen detection assays. In recent times, phage display technology has facilitated the discovery of scFv antibody against Strongyloides protein that can accelerate the development of such assays. Improvements in both direct detection methods are being made. Strongyloides molecular diagnostics is moving from the detection of a single infection to the simultaneous detection of soil-transmitted helminths. Meanwhile, antigen detection assays can also be multiplexed and aptamers can be used as antigen binders. In the near future, these two direct detection methods may be more widely used as diagnostic tools for strongyloidiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bisoffi Z, Buonfrate D, Montresor A, Requena-Méndez A, Munoz J, Krolewiecki AJ et al (2013) Strongyloides stercoralis: a plea for action. PLoS Negl Trop Dis 7(5):e2214

    PubMed  PubMed Central  Google Scholar 

  2. Taylor MJ, Garrard TA, O’Donahoo FJ, Ross KE (2014) Human strongyloidiasis: identifying knowledge gaps, with emphasis on environmental control. Res Rep Trop Med 3:55–63

    Google Scholar 

  3. Krolewiecki A, Nutman TB (2019) Strongyloidiasis: a neglected tropical disease. Infect Dis Clin 33(1):135–151

    Google Scholar 

  4. Keiser PB, Nutman TB (2004) Strongyloides stercoralis in the immunocompromised population. Clin Microbiol Rev 17(1):208–217

    PubMed  PubMed Central  Google Scholar 

  5. Hartono C, Muthukumar T, Suthanthiran M (2013) Immunosuppressive drug therapy. Cold Spring Harb Perspect Med 3(9):a015487

    PubMed  PubMed Central  Google Scholar 

  6. Genta RM (1992) Dysregulation of strongyloidiasis: a new hypothesis. Clin Microbiol Rev 5(4):345–355

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ghosh K, Ghosh K (2007) Strongyloides stercoralis septicaemia following steroid therapy for eosinophilia: report of three cases. Trans R Soc Trop Med Hyg 101(11):1163–1165

    PubMed  Google Scholar 

  8. Blaizot R, Simon S, Brottier J, Blanchet D, Brousse P, Boukhari R et al (2019) Utility of PCR in patients with Strongyloides stercoralis and HTLV-1 Coinfection in French Guiana. Am J Trop Med Hyg 101:848–850

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Speare R, Durrheim D (2004) Strongyloides serology–useful for diagnosis and management of strongyloidiasis in rural indigenous populations, but important gaps in knowledge remain. Rural Remote Health 4(4):264

    CAS  PubMed  Google Scholar 

  10. Rodrigues RM, de Oliveira MC, Sopelete MC, Silva DA, Campos DM, Taketomi EA et al (2007) IgG1, IgG4, and IgE antibody responses in human strongyloidiasis by ELISA using Strongyloides ratti saline extract as heterologous antigen. Parasitol Res 101(5):1209–1214

    PubMed  Google Scholar 

  11. Biggs B-A, Caruana S, Mihrshahi S, Jolley D, Leydon J, Chea L et al (2009) Management of chronic strongyloidiasis in immigrants and refugees: is serologic testing useful? Am J Trop Med Hyg 80(5):788–791

    PubMed  Google Scholar 

  12. Llewellyn S, Inpankaew T, Nery SV, Gray DJ, Verweij JJ, Clements AC et al (2016) Application of a multiplex quantitative PCR to assess prevalence and intensity of intestinal parasite infections in a controlled clinical trial. PLoS Negl Trop Dis 10(1):e0004380

    PubMed  PubMed Central  Google Scholar 

  13. Incani RN, Ferrer E, Hoek D, Ramak R, Roelfsema J, Mughini-Gras L et al (2017) Diagnosis of intestinal parasites in a rural community of Venezuela: advantages and disadvantages of using microscopy or RT-PCR. Acta Trop 167:64–70

    CAS  PubMed  Google Scholar 

  14. Watts MR, Robertson G, Bradbury RS (2016) The laboratory diagnosis of Strongyloides stercoralis. Microbiol Aust 37(1):4–9

    Google Scholar 

  15. Becker SL, Piraisoody N, Kramme S, Marti H, Silué KD, Panning M et al (2015) Real-time PCR for detection of Strongyloides stercoralis in human stool samples from Côte d’Ivoire: diagnostic accuracy, inter-laboratory comparison and patterns of hookworm co-infection. Acta Trop 150:210–217

    CAS  PubMed  Google Scholar 

  16. Kristanti H, Meyanti F, Wijayanti MA, Mahendradhata Y, Polman K, Chappuis F et al (2018) Diagnostic comparison of Baermann funnel, Koga agar plate culture and polymerase chain reaction for detection of human Strongyloides stercoralis infection in Maluku, Indonesia. Parasitol Res 117(10):3229–3235

    PubMed  Google Scholar 

  17. Watts MR, James G, Sultana Y, Ginn AN, Outhred AC, Kong F et al (2014) A loop-mediated isothermal amplification (LAMP) assay for Strongyloides stercoralis in stool that uses a visual detection method with SYTO-82 fluorescent dye. Am J Trop Med Hyg 90(2):306–311

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zarlenga DS, Higgins J (2001) PCR as a diagnostic and quantitative technique in veterinary parasitology. Vet Parasitol 101(3–4):215–230

    CAS  PubMed  Google Scholar 

  19. Gasser RB (2006) Molecular tools—advances, opportunities and prospects. Vet Parasitol 136(2):69–89

    CAS  PubMed  Google Scholar 

  20. Barda B, Wampfler R, Sayasone S, Phongluxa K, Xayavong S, Keoduangsy K et al (2018) Evaluation of two DNA extraction methods for detection of Strongyloides stercoralis infection. J Clin Microbiol 56(4):e01941–e01917

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fakhrieh-Kashan Z, Zahabiun F, Sharifdini M, Fotouhi-Ardakani R, Kia E (2019) Critical diagnosis of complicated strongyloidosis with nested-PCR and high resolution melting analysis (HRM). Ann Parasitol 65(4):333–9-–9

    PubMed  Google Scholar 

  22. Sanprasert V, Kerdkaew R, Srirungruang S, Charuchaibovorn S, Phadungsaksawasdi K, Nuchprayoon S (2019) Development of conventional multiplex PCR: a rapid technique for simultaneous detection of soil-transmitted helminths. Pathogens 8(3):152

    CAS  PubMed Central  Google Scholar 

  23. Nagayasu E, Htwe MPPTH, Hortiwakul T, Hino A, Tanaka T, Higashiarakawa M et al (2017) A possible origin population of pathogenic intestinal nematodes, Strongyloides stercoralis, unveiled by molecular phylogeny. Sci Rep 7(1):4844

    PubMed  PubMed Central  Google Scholar 

  24. Ramachandran S, Gam AA, Neva FA (1997) Molecular differences between several species of Strongyloides and comparison of selected isolates of S. stercoralis using a polymerase chain reaction-linked restriction fragment length polymorphism approach. Am J Trop Med Hyg 56(1):61–65

    CAS  PubMed  Google Scholar 

  25. Hu P, Hegde M, Lennon PA (2012) Modern clinical molecular techniques. Springer Science & Business Media, New York

    Google Scholar 

  26. Tong SY, Giffard PM (2012) Microbiological applications of high-resolution melting analysis. J Clin Microbiol 50(11):3418–3421

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Erali M, Voelkerding KV, Wittwer CT (2008) High resolution melting applications for clinical laboratory medicine. Exp Mol Pathol 85(1):50–58

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mori Y, Kanda H, Notomi T (2013) Loop-mediated isothermal amplification (LAMP): recent progress in research and development. J Infect Chemother 19(3):404–411

    CAS  PubMed  Google Scholar 

  29. Nakamura N, Ito K, Takahashi M, Hashimoto K, Kawamoto M, Yamanaka M et al (2007) Detection of six single-nucleotide polymorphisms associated with rheumatoid arthritis by a loop-mediated isothermal amplification method and an electrochemical DNA chip. Anal Chem 79(24):9484–9493

    CAS  PubMed  Google Scholar 

  30. Fernández-Soto P, Sánchez-Hernández A, Gandasegui J, Santos CB, López-Abán J, Saugar JM et al (2016) Strong-LAMP: a LAMP assay for Strongyloides spp. detection in stool and urine samples. Towards the diagnosis of human strongyloidiasis starting from a rodent model. PLoS Negl Trop Dis 10(7):e0004836

    PubMed  PubMed Central  Google Scholar 

  31. Watts MR, Kim R, Ahuja V, Robertson GJ, Sultana Y, Wehrhahn M et al (2019) Comparison of loop-mediated isothermal amplification (LAMP) and real-time polymerase chain reaction (PCR) assays for the detection of Strongyloides in different specimen matrices. J Clin Microbiol 57(4):e01173–01118

  32. Buonfrate D, Requena-Mendez A, Angheben A, Cinquini M, Cruciani M, Fittipaldo A et al (2018) Accuracy of molecular biology techniques for the diagnosis of Strongyloides stercoralis infection—a systematic review and meta-analysis. PLoS Negl Trop Dis 12(2):e0006229

    PubMed  PubMed Central  Google Scholar 

  33. Paula FMD, Malta FDM, Marques PD, Sitta RB, Pinho JRR, Gryschek RCB et al (2015) Molecular diagnosis of strongyloidiasis in tropical areas: a comparison of conventional and real-time polymerase chain reaction with parasitological methods. Mem Inst Oswaldo Cruz 110(2):272–274

  34. Sharifdini M, Mirhendi H, Ashrafi K, Hosseini M, Mohebali M, Khodadadi H et al (2015) Comparison of nested polymerase chain reaction and real-time polymerase chain reaction with parasitological methods for detection of Strongyloides stercoralis in human fecal samples. Am J Trop Med Hyg 93(6):1285–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Amor A, Rodriguez E, Saugar JM, Arroyo A, López-Quintana B, Abera B et al (2016) High prevalence of Strongyloides stercoralis in school-aged children in a rural highland of North-Western Ethiopia: the role of intensive diagnostic work-up. Parasit Vectors 9(1):617

    PubMed  PubMed Central  Google Scholar 

  36. Buonfrate D, Perandin F, Formenti F, Bisoffi Z (2017) A retrospective study comparing agar plate culture, indirect immunofluorescence and real-time PCR for the diagnosis of Strongyloides stercoralis infection. Parasitology 144(6):812–816

    CAS  PubMed  Google Scholar 

  37. Meurs L, Polderman AM, Melchers NVV, Brienen EA, Verweij JJ, Groosjohan B et al (2017) Diagnosing polyparasitism in a high-prevalence setting in Beira, Mozambique: detection of intestinal parasites in fecal samples by microscopy and real-time PCR. PLoS Negl Trop Dis 11(1):e0005310

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lodh N, Caro R, Sofer S, Scott A, Krolewiecki A, Shiff C (2016) Diagnosis of Strongyloides stercoralis: detection of parasite-derived DNA in urine. Acta Trop 163:9–13

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mas-Coma S, Bargues M (2009) Populations, hybrids and the systematic concepts of species and subspecies in Chagas disease triatomine vectors inferred from nuclear ribosomal and mitochondrial DNA. Acta Trop 110(2–3):112–136

    CAS  PubMed  Google Scholar 

  40. Labes E, Wijayanti N, Deplazes P, Mathis A (2011) Genetic characterization of Strongyloides spp. from captive, semi-captive and wild Bornean orangutans (Pongo pygmaeus) in Central and East Kalimantan, Borneo, Indonesia. Parasitology 138(11):1417–1422

    CAS  PubMed  Google Scholar 

  41. Laymanivong S, Hangvanthong B, Insisiengmay B, Vanisaveth V, Laxachack P, Jongthawin J et al (2016) First molecular identification and report of genetic diversity of Strongyloides stercoralis, a current major soil-transmitted helminth in humans from Lao People’s Democratic Republic. Parasitol Res 115(8):2973–2980

    PubMed  Google Scholar 

  42. Terashima A, Canales M, Tello R, Mas-Coma S, Esteban G, Bargues M et al (2000) Strongyloides fuelleborni: reporte del primer caso clínico en el Perú. Diagnóstico 39:199–203

    Google Scholar 

  43. Van De N, Minh PN, Mas-Coma S (2019) Strongyloidiasis in northern Vietnam: epidemiology, clinical characteristics and molecular diagnosis of the causal agent. Parasit Vectors 12(1):515

    PubMed  PubMed Central  Google Scholar 

  44. Verweij JJ, Canales M, Polman K, Ziem J, Brienen EA, Polderman AM et al (2009) Molecular diagnosis of Strongyloides stercoralis in faecal samples using real-time PCR. Trans R Soc Trop Med Hyg 103(4):342–346

    CAS  PubMed  Google Scholar 

  45. Formenti F, La Marca G, Perandin F, Pajola B, Romano M, Santucci B et al (2019) A diagnostic study comparing conventional and real-time PCR for Strongyloides stercoralis on urine and on faecal samples. Acta Trop 190:284–287

    CAS  PubMed  Google Scholar 

  46. Basso W, Grandt L-M, Magnenat A-L, Gottstein B, Campos M (2019) Strongyloides stercoralis infection in imported and local dogs in Switzerland: from clinics to molecular genetics. Parasitol Res 118(1):255–266

    PubMed  Google Scholar 

  47. Gorgani-Firouzjaee T, Kalantari N, Javanian M, Ghaffari S (2018) Strongyloides stercoralis: detection of parasite-derived DNA in serum samples obtained from immunosuppressed patients. Parasitol Res 117(9):2927–2932

    PubMed  Google Scholar 

  48. Weerakoon KG, McManus DP (2016) Cell-free DNA as a diagnostic tool for human parasitic infections. Trends Parasitol 32(5):378–391

    CAS  PubMed  Google Scholar 

  49. Bosqui LR, Marques PD, de Melo GB, Maria do Rosário F, Malta FM, Pavanelli WR et al (2018) Molecular and immnune diagnosis: further testing for human strongyloidiasis. Mol Diagn Ther 22(4):485–491

    CAS  PubMed  Google Scholar 

  50. Al-Mekhlafi HM, Nasr NA, Lim YA, Elyana FN, Sady H, Atroosh WM et al (2019) Prevalence and risk factors of Strongyloides stercoralis infection among Orang Asli schoolchildren: new insights into the epidemiology, transmission and diagnosis of strongyloidiasis in Malaysia. Parasitology 146(12):1602–1614

    CAS  PubMed  Google Scholar 

  51. Ahmad AF, Hadip F, Ngui R, Lim YA, Mahmud R (2013) Serological and molecular detection of Strongyloides stercoralis infection among an Orang Asli community in Malaysia. Parasitol Res 112(8):2811–2816

    PubMed  Google Scholar 

  52. Sahimin N, Lim YA, Noordin R, Yunus MH, Arifin N, Behnke JM et al (2019) Epidemiology and immunodiagnostics of Strongyloides stercoralis infections among migrant workers in Malaysia. Asian Pac J Trop Med 12(6):250

    CAS  Google Scholar 

  53. Knopp S, Salim N, Schindler T, Karagiannis Voules DA, Rothen J, Lweno O et al (2014) Diagnostic accuracy of Kato-Katz, FLOTAC, Baermann, and PCR methods for the detection of light-intensity hookworm and Strongyloides stercoralis infections in Tanzania. Am J Trop Med Hyg 90(3):535–545

    PubMed  PubMed Central  Google Scholar 

  54. Taniuchi M, Verweij JJ, Noor Z, Sobuz SU, van Lieshout L, Petri WA Jr et al (2011) High throughput multiplex PCR and probe-based detection with Luminex beads for seven intestinal parasites. Am J Trop Med Hyg 84(2):332–337

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Basuni M, Muhi J, Othman N, Verweij JJ, Ahmad M, Miswan N et al (2011) A pentaplex real-time polymerase chain reaction assay for detection of four species of soil-transmitted helminths. Am J Trop Med Hyg 84(2):338–343

    PubMed  PubMed Central  Google Scholar 

  56. Mejia R, Vicuña Y, Broncano N, Sandoval C, Vaca M, Chico M et al (2013) A novel, multi-parallel, real-time polymerase chain reaction approach for eight gastrointestinal parasites provides improved diagnostic capabilities to resource-limited at-risk populations. Am J Trop Med Hyg 88(6):1041–1047

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zueter AM, Mohamed Z, Abdullah AD, Mohamad N, Arifin N, Othman N et al (2014) Detection of Strongyloides stercoralis infection among cancer patients in a major hospital in Kelantan, Malaysia. Singap Med J 55(7):367

    Google Scholar 

  58. Sultana Y, Jeoffreys N, Watts MR, Gilbert GL, Lee R (2013) Real-time polymerase chain reaction for detection of Strongyloides stercoralis in stool. Am J Trop Med Hyg 88(6):1048–1051

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Campo-Polanco LF, Sarmiento JMH, Mesa MA, Franco CJV, López L, Botero LE et al (2018) Strongyloidiasis in humans: diagnostic efficacy of four conventional methods and real-time polymerase chain reaction. Rev Soc Bras Med Trop 51(4):493–502

    PubMed  Google Scholar 

  60. Cunningham LJ, Stothard JR, Osei-Atweneboana M, Armoo S, Verweij JJ, Adams ER (2018) Developing a real-time PCR assay based on multiplex high-resolution melt-curve analysis: a pilot study in detection and discrimination of soil-transmitted helminth and schistosome species. Parasitology 145(13):1733–1738

    PubMed  Google Scholar 

  61. Krolewiecki AJ, Koukounari A, Romano M, Caro NN, Scott AL, Fleitas P et al (2018) Transrenal DNA-based diagnosis of Strongyloides stercoralis (Grassi, 1879) infection: Bayesian latent class modeling of test accuracy. PLoS Negl Trop Dis 12(6):e0006550

    PubMed  PubMed Central  Google Scholar 

  62. Javanian M, Gorgani-Firouzjaee T, Kalantrai N (2019) Comparison of ELISA and PCR of the 18S rRNA gene for detection of human strongyloidiasis using serum sample. Infect Dis Ther 51(5):360–367

    CAS  Google Scholar 

  63. Repetto SA, Alba Soto CD, Cazorla SI, Tayeldin ML, Cuello S, Lasala MB et al (2013) An improved DNA isolation technique for PCR detection of Strongyloides stercoralis in stool samples. Acta Trop 126(2):110–114

    CAS  PubMed  Google Scholar 

  64. Bretagne S, Costa JM (2006) Towards a nucleic acid-based diagnosis in clinical parasitology and mycology. Clin Chim Acta 363(1–2):221–228

    CAS  PubMed  Google Scholar 

  65. Levenhagen MA, Costa-Cruz JM (2014) Update on immunologic and molecular diagnosis of human strongyloidiasis. Acta Trop 135:33–43

    CAS  PubMed  Google Scholar 

  66. Papaiakovou M, Wright J, Pilotte N, Chooneea D, Schär F, Truscott JE et al (2019) Pooling as a strategy for the timely diagnosis of soil-transmitted helminths in stool: value and reproducibility. Parasit Vectors 12:443

    PubMed  PubMed Central  Google Scholar 

  67. Gyorkos TW, Genta RM, Viens P, Maclean JD (1990) Seroepidemiology of Strongyloides infection in the Southeast Asian refugee population in Canada. Am J Epidemiol 132(2):257–264

    CAS  PubMed  Google Scholar 

  68. Sykes AM, McCarthy JS (2011) A coproantigen diagnostic test for Strongyloides infection. PLoS Negl Trop Dis 5(2):e955

    PubMed  PubMed Central  Google Scholar 

  69. El-Badry AA (2009) ELISA-based coproantigen in human strongyloidiaisis: a diagnostic method correlating with worm burden. J Egypt Soc Parasitol 39(3):757–768

    PubMed  Google Scholar 

  70. Gonçalves ALR, Silva CV, Ueta MT, Costa-Cruz JM (2010) A new faecal antigen detection system for Strongyloides venezuelensis diagnosis in immunosuppressed rats. Exp Parasitol 125(4):338–341

    PubMed  Google Scholar 

  71. Nageswaran C, Craig P, Devaney E (1994) Coproantigen detection in rats experimentally infected with Strongyloides ratti. Parasitology 108(3):335–342

    CAS  PubMed  Google Scholar 

  72. Gonçalves A, Nunes D, Gonçalves-Pires M, Ueta M, Costa-Cruz J (2012) Use of larval, parasitic female and egg antigens from Strongyloides venezuelensis to detect parasite-specific IgG and immune complexes in immunodiagnosis of human strongyloidiasis. Parasitology 139(7):956–961

    PubMed  Google Scholar 

  73. Mahmuda A, Bande F, Abdulhaleem N, Majid RA, Hamat RA, Abdullah WO et al (2018) Investigations for the possible use of a monoclonal antibody produced against Strongyloides ratti antigen as an immunodiagnostic reagent for active Strongyloidiasis. Iran J Parasitol 13(2):204

    PubMed  PubMed Central  Google Scholar 

  74. Abduhaleem N, Mamuda A, Mustapha T, Abd Majid R, Lung LTT, Unyah NZ (2019) Evaluation of monoclonal antibody (IgG2bMAb) for detection of coproantigen from experimentally infected rats with Strongyloides ratti. Annu Res Rev Biol 32(2):1–9

  75. Taweethavonsawat P, Chaicumpa W, Chaisri U, Chuenbal U, Sakolvaree Y, Tapchaisri P et al (2002) Specific monoclonal antibodies to Strongyloides stercoralis: a potential diagnostic reagent for strongyloidiasis. Asian Pac J Allergy Immunol 20(4):247

    CAS  PubMed  Google Scholar 

  76. Pasqualini R, Arap W (2004) Hybridoma-free generation of monoclonal antibodies. Proc Natl Acad Sci 101(1):257–259

    CAS  PubMed  Google Scholar 

  77. Siegel D (2002) Recombinant monoclonal antibody technology. Transfus Clin Biol 9(1):15–22

    CAS  PubMed  Google Scholar 

  78. Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23(9):1105

    CAS  PubMed  Google Scholar 

  79. Sepulveda J, Tremblay JM, DeGnore JP, Skelly PJ, Shoemaker CB (2010) Schistosoma mansoni host-exposed surface antigens characterized by sera and recombinant antibodies from schistosomiasis-resistant rats. Int J Parasitol 40(12):1407–1417

    CAS  PubMed  PubMed Central  Google Scholar 

  80. da Silva RV, Araújo TG, Gonzaga HT, Nascimento R, Goulart LR, Costa-Cruz JM (2013) Development of specific scFv antibodies to detect neurocysticercosis antigens and potential applications in immunodiagnosis. Immunol Lett 156(1–2):59–67

    Google Scholar 

  81. Rahumatullah A, Lim TS, Yunus MH, Noordin R (2019) Development of an antigen detection ELISA for bancroftian filariasis using BmSXP-specific recombinant monoclonal antibody. Am J Trop Med Hyg 101(2):436–440

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Levenhagen MA, Santos FAA, Fujimura PT, Carneiro AP, Costa-Cruz JM, Goulart LR (2015) Structural and functional characterization of a novel scFv anti-HSP60 of Strongyloides sp. Sci Rep 5:10447

    PubMed  PubMed Central  Google Scholar 

  83. Miguel CB, Levenhagen MA, Costa-Cruz JM, Goulart LR, Alves PT, Ueira-Vieira C et al (2020) scFv against HSP60 of Strongyloides sp. and its application in the evaluation of parasite frequency in the elderly. Dis Markers 2020. https://doi.org/10.1155/2020/4086929

  84. Ravi V, Ramachandran S, Thompson RW, Andersen JF, Neva FA (2002) Characterization of a recombinant immunodiagnostic antigen (NIE) from Strongyloides stercoralis L3-stage larvae. Mol Biochem Parasitol 125(1):73–81

    CAS  PubMed  Google Scholar 

  85. Ramanathan R, Burbelo PD, Groot S, Iadarola MJ, Neva FA, Nutman TB (2008) A luciferase immunoprecipitation systems assay enhances the sensitivity and specificity of diagnosis of Strongyloides stercoralis infection. J Infect Dis 198(3):444–451

    PubMed  PubMed Central  Google Scholar 

  86. Krolewiecki AJ, Ramanathan R, Fink V, McAuliffe I, Cajal SP, Won K et al (2010) Improved diagnosis of Strongyloides stercoralis using recombinant antigen-based serologies in a community-wide study in northern Argentina. Clin Vaccine Immunol 17(10):1624–1630

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Arifin N, Yunus MH, Nolan JT, Lok BJ, Noordin R (2018) Identification and preliminary evaluation of novel recombinant protein for serodiagnosis of strongyloidiasis. Am J Trop Med Hyg 98(4):1165–1170

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Masoori L, Falak R, Mokhtarian K, Bandehpour M, Razmjou E, Jalallou N et al (2019) Production of recombinant 14-3-3 protein and determination of its immunogenicity for application in serodiagnosis of strongyloidiasis. Trans R Soc Trop Med Hyg 113(6):326–331

    CAS  PubMed  Google Scholar 

  89. Momčilović S, Cantacessi C, Arsić-Arsenijević V, Otranto D, Tasić-Otašević S (2019) Rapid diagnosis of parasitic diseases: current scenario and future needs. Clin Microbiol Infect 25(3):290–309

    PubMed  Google Scholar 

  90. Paulos S, Saugar JM, de Lucio A, Fuentes I, Mateo M, Carmena D (2019) Comparative performance evaluation of four commercial multiplex real-time PCR assays for the detection of the diarrhoea-causing protozoa Cryptosporidium hominis/parvum, Giardia duodenalis and Entamoeba histolytica. PLoS One 14(4):e0215068

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Some of the authors are supported by funding from the Malaysian Ministry of Education through the Higher Institution Centre of Excellence (HICoE) Program (Grant No. 311/CIPPM/4401005) and FRGS Grant (No. 203/CIPPM/6711636).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Rahmah Noordin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balachandra, D., Ahmad, H., Arifin, N. et al. Direct detection of Strongyloides infection via molecular and antigen detection methods. Eur J Clin Microbiol Infect Dis 40, 27–37 (2021). https://doi.org/10.1007/s10096-020-03949-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-020-03949-x

Keywords

Navigation