Skip to main content

Advertisement

Log in

Molecular characterization of Shigella species isolated from diarrheal patients in Tehran, Iran: phylogenetic typing and its association with virulence gene profiles and a novel description of Shigella invasion associated locus

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The present study aims to employ a multiplex PCR-based method for phylogenetic typing of Shigella and determine the frequency of several virulence genes among Shigella phylogenetic clades and species. Species identification, phylogenetic typing of 44 previously diagnosed Shigella isolates, and frequency of virulence genes and loci, virA, virB, virF, ipaBCD, ial, sen, and set1A were investigated through performing several PCR assays. Distribution of virulence genes among Shigella phylogenetic clades and species was determined by the statistical analysis. The identities of 40 isolates out of 44 were confirmed as Shigella, and these isolates were classified in four phylogenetic clades, S1 (7.5%), S2 (52.5%), S3 (20%), and S5 (20%) and 4 species, S. sonnei (52.5%), S. flexneri (22.5%), S. dysenteriae (20%), and S. boydii (5%). The prevalence of virA, virB, virF, ipaBCD, ial, sen, and set1A was determined as 67.5%, 72.5%, 72.5%, 65%, 75%, 40%, and 5%, respectively. The presence of sen, uidA, or set1A was found to be statistically correlated with either of Shigella phylogenetic clades or species. A significant statistically association was also determined between set1A and Shigella phylogenetic clades. Furthermore, the nucleotide sequence of invasion-associated locus (ial) was determined and mapped on Shigella genome through in silico analysis. The current study shows the distribution of Shigella isolates and its key virulence genes within the five recently described phylogenetic clades for the first time in the Asia. This is also the first description of ial nucleotide sequence and its exact location on Shigella genome after its initial identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

All data contained in this study are available from the corresponding author upon request.

References

  1. Sethuvel DPM, Anandan S, Michael JS, Murugan D, Neeravi A, Verghese VP, Walia K, Veeraraghavan B (2019) Virulence gene profiles of Shigella species isolated from stool specimens in India: its association with clinical manifestation and antimicrobial resistance. Pathog Glob Health 113(4):173–179. https://doi.org/10.1080/20477724.2019.1632062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baker KS, Campos J, Pichel M, Della Gaspera A, Duarte-Martinez F, Campos-Chacon E, Bolanos-Acuna HM, Guzman-Verri C, Mather AE, Diaz Velasco S, Zamudio Rojas ML, Forbester JL, Connor TR, Keddy KH, Smith AM, Lopez de Delgado EA, Angiolillo G, Cuaical N, Fernandez J, Aguayo C, Morales Aguilar M, Valenzuela C, Morales Medrano AJ, Sirok A, Weiler Gustafson N, Diaz Guevara PL, Montano LA, Perez E, Thomson NR (2017) Whole genome sequencing of Shigella sonnei through PulseNet Latin America and Caribbean: advancing global surveillance of foodborne illnesses. Clin Microbiol Infect 23(11):845–853. https://doi.org/10.1016/j.cmi.2017.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu Y, Lau HK, Lee T, Lau DK, Payne J (2019) In silico serotyping based on whole-genome sequencing improves the accuracy of Shigella identification. Appl Environ Microbiol 85(7). https://doi.org/10.1128/AEM.00165-19

  4. Schnupf P, Sansonetti PJ (2019) Shigella pathogenesis: new insights through advanced methodologies. Microbiol Spectr 7(2). https://doi.org/10.1128/microbiolspec.BAI-0023-2019

  5. Holt KE, Baker S, Weill FX, Holmes EC, Kitchen A, Yu J, Sangal V, Brown DJ, Coia JE, Kim DW, Choi SY, Kim SH, da Silveira WD, Pickard DJ, Farrar JJ, Parkhill J, Dougan G, Thomson NR (2012) Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nat Genet 44(9):1056–1059. https://doi.org/10.1038/ng.2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Holt KE, Thieu Nga TV, Thanh DP, Vinh H, Kim DW, Vu Tra MP, Campbell JI, Hoang NV, Vinh NT, Minh PV, Thuy CT, Nga TT, Thompson C, Dung TT, Nhu NT, Vinh PV, Tuyet PT, Phuc HL, Lien NT, Phu BD, Ai NT, Tien NM, Dong N, Parry CM, Hien TT, Farrar JJ, Parkhill J, Dougan G, Thomson NR, Baker S (2013) Tracking the establishment of local endemic populations of an emergent enteric pathogen. Proc Natl Acad Sci U S A 110(43):17522–17527. https://doi.org/10.1073/pnas.1308632110

    Article  PubMed  PubMed Central  Google Scholar 

  7. Svetoch TE, Dentovskaya SV, Svetoch EA (2017) Molecular typing of Shigella strains. Mol Gen Mikrobiol Virusol 35(1):7–11

    Article  CAS  Google Scholar 

  8. Chung The H, Rabaa MA, Pham Thanh D, De Lappe N, Cormican M, Valcanis M, Howden BP, Wangchuk S, Bodhidatta L, Mason CJ, Nguyen Thi Nguyen T, Vu Thuy D, Thompson CN, Phu Huong Lan N, Voong Vinh P, Ha Thanh T, Turner P, Sar P, Thwaites G, Thomson NR, Holt KE, Baker S (2016) South Asia as a reservoir for the global spread of ciprofloxacin-resistant Shigella sonnei: a cross-sectional study. PLoS Med 13(8):e1002055. https://doi.org/10.1371/journal.pmed.1002055

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sahl JW, Morris CR, Emberger J, Fraser CM, Ochieng JB, Juma J, Fields B, Breiman RF, Gilmour M, Nataro JP, Rasko DA (2015) Defining the phylogenomics of Shigella species: a pathway to diagnostics. J Clin Microbiol 53(3):951–960. https://doi.org/10.1128/JCM.03527-14

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brengi SP, Sun Q, Bolanos H, Duarte F, Jenkins C, Pichel M, Shahnaij M, Sowers EG, Strockbine N, Talukder KA, Derado G, Vinas MR, Kam KM, Xu J (2019) PCR-based method for Shigella flexneri serotyping: international multicenter validation. J Clin Microbiol 57(4). https://doi.org/10.1128/JCM.01592-18

  11. Pettengill EA, Pettengill JB, Binet R (2016) Phylogenetic analyses of Shigella and enteroinvasive Escherichia coli for the identification of molecular epidemiological markers: whole-genome comparative analysis does not support distinct genera designation. Front Microbiol 6(1573). https://doi.org/10.3389/fmicb.2015.01573

  12. Kotloff KL, Riddle MS, Platts-Mills JA, Pavlinac P, Zaidi AKM (2018) Shigellosis. Lancet 391(10122):801–812. https://doi.org/10.1016/S0140-6736(17)33296-8

    Article  PubMed  Google Scholar 

  13. Schroeder GN, Hilbi H (2008) Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 21(1):134–156. https://doi.org/10.1128/CMR.00032-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Picking WL, Picking WD (2016) The many faces of IpaB. Front Cell Infect Microbiol 6:12. https://doi.org/10.3389/fcimb.2016.00012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mattock E, Blocker AJ (2017) How do the virulence factors of Shigella work together to cause disease? Front Cell Infect Microbiol 7:64. https://doi.org/10.3389/fcimb.2017.00064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seyedarabi A (2010) The orchestrators of Shigella flexneri infection. Crystallogr Rev 16(2):145–165. https://doi.org/10.1080/08893110903563732

    Article  CAS  Google Scholar 

  17. da Cruz CB, de Souza MC, Serra PT, Santos I, Balieiro A, Pieri FA, Nogueira PA, Orlandi PP (2014) Virulence factors associated with pediatric shigellosis in Brazilian Amazon. Biomed Res Int 2014:539697. https://doi.org/10.1155/2014/539697

    Article  PubMed  PubMed Central  Google Scholar 

  18. Medeiros P, Lima AAM, Guedes MM, Havt A, Bona MD, Rey LC, Soares AM, Guerrant RL, Weigl BH, Lima IFN (2018) Molecular characterization of virulence and antimicrobial resistance profile of Shigella species isolated from children with moderate to severe diarrhea in northeastern Brazil. Diagn Microbiol Infect Dis 90(3):198–205. https://doi.org/10.1016/j.diagmicrobio.2017.11.002

    Article  CAS  PubMed  Google Scholar 

  19. Lluque A, Mosquito S, Gomes C, Riveros M, Durand D, Tilley DH, Bernal M, Prada A, Ochoa TJ, Ruiz J (2015) Virulence factors and mechanisms of antimicrobial resistance in Shigella strains from periurban areas of Lima (Peru). Int J Med Microbiol 305(4–5):480–490. https://doi.org/10.1016/j.ijmm.2015.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. https://doi.org/10.1186/1471-2105-13-134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sayers EW, Beck J, Brister JR, Bolton EE, Canese K, Comeau DC, Funk K, Ketter A, Kim S, Kimchi A, Kitts PA, Kuznetsov A, Lathrop S, Lu Z, McGarvey K, Madden TL, Murphy TD, O'Leary N, Phan L, Schneider VA, Thibaud-Nissen F, Trawick BW, Pruitt KD, Ostell J (2020) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 48(D1):D9–D16. https://doi.org/10.1093/nar/gkz899

    Article  PubMed  Google Scholar 

  22. Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD, Karsch-Mizrachi I (2019) GenBank. Nucleic Acids Res 47(D1):D94–D99. https://doi.org/10.1093/nar/gky989

    Article  CAS  PubMed  Google Scholar 

  23. invasion associate locus (2020) https://www.ncbi.nlm.nih.gov/nuccore/914962?report=graph&tracks=[key:sequence_track,name:Sequence,display_name:Sequence,id:STD649220238,annots:Sequence,ShowLabel:false,shown:true,order:1][key:gene_model_track,name:Genes,display_name:Genes,id:STD3194982005,annots:Unnamed,Options:ShowAll,CDSProductFeats:false,NtRuler:true,AaRuler:true,HighlightMode:2,ShowLabel:true,shown:true,order:3][key:feature_track,name:Other features%2D%2D-Pub,display_name:Pub Features,id:STD977062632,subkey:Pub,annots:Unnamed,Layout:Adaptive,LinkedFeat:Packed,shown:true,order:4][key:feature_track,name:Other features%2D%2D-RBS,display_name:RBS Features,id:STD2999687782,subkey:RBS,annots:Unnamed,Layout:Adaptive,LinkedFeat:Packed,shown:true,order:5]&mk=17789:18108|ial%20320bp%20seq|ff0000,17753:20322|2.6kb%20invasion-associated%20locus|0000ff&v=17023:18709&c=99cc00&select=null&slim=0. Accessed 1/10/2020

  24. ipaBCD target sequence (2020) https://www.ncbi.nlm.nih.gov/nuccore/1726031677?report=graph&tracks=[key:sequence_track,name:Sequence,display_name:Sequence,id:STD649220238,annots:Sequence,ShowLabel:false,shown:true,order:1][key:gene_model_track,name:Genes,display_name:Genes,id:STD3194982005,annots:Unnamed,Options:MergeAll,CDSProductFeats:false,NtRuler:true,AaRuler:true,HighlightMode:2,ShowLabel:true,shown:true,order:3]&assm_context=GCA_002442995.2&mk=109942:110553|ipaBCD%20target|0000ff&v=109535:110822&c=00ffff&select=null&slim=0. Accessed 10/1/2020

  25. Zhu Y, Li H, Hu L, Wang J, Zhou Y, Pang Z, Liu L, Shao F (2008) Structure of a Shigella effector reveals a new class of ubiquitin ligases. Nat Struct Mol Biol 15(12):1302–1308. https://doi.org/10.1038/nsmb.1517

    Article  CAS  PubMed  Google Scholar 

  26. O'Leary J, Corcoran D, Lucey B (2009) Comparison of the EntericBio multiplex PCR system with routine culture for detection of bacterial enteric pathogens. J Clin Microbiol 47(11):3449–3453. https://doi.org/10.1128/JCM.01026-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li JW, Shi XQ, Chao FH, Wang XW, Zheng JL, Song N (2004) A study on detecting and identifying enteric pathogens with PCR. Biomed Environ Sci 17(1):109–120

    PubMed  Google Scholar 

  28. Molina F, Lopez-Acedo E, Tabla R, Roa I, Gomez A, Rebollo JE (2015) Improved detection of Escherichia coli and coliform bacteria by multiplex PCR. BMC Biotechnol 15:48. https://doi.org/10.1186/s12896-015-0168-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pavlovic M, Luze A, Konrad R, Berger A, Sing A, Busch U, Huber I (2011) Development of a duplex real-time PCR for differentiation between E. coli and Shigella spp. J Appl Microbiol 110(5):1245–1251. https://doi.org/10.1111/j.1365-2672.2011.04973.x

    Article  CAS  PubMed  Google Scholar 

  30. Godambe LP, Bandekar J, Shashidhar R (2017) Species specific PCR based detection of Escherichia coli from Indian foods. 3 Biotech 7(2):130. https://doi.org/10.1007/s13205-017-0784-8

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lobersli I, Wester AL, Kristiansen A, Brandal LT (2016) Molecular differentiation of Shigella Spp. from enteroinvasive E. Coli. Eur J Microbiol Immunol (Bp) 6(3):197–205. https://doi.org/10.1556/1886.2016.00004

    Article  CAS  Google Scholar 

  32. Faherty CS, Harper JM, Shea-Donohue T, Barry EM, Kaper JB, Fasano A, Nataro JP (2012) Chromosomal and plasmid-encoded factors of Shigella flexneri induce secretogenic activity ex vivo. PLoS One 7(11):e49980. https://doi.org/10.1371/journal.pone.0049980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chowdhury VP, Azmi IJ, Islam MR, Akter M, Mahmud S, Golam Faruque AS, Talukder KA (2019) Evaluation of the impact of Shigella virulence genes on the basis of clinical features observed in patients with shigellosis. bioRxiv 865832. https://doi.org/10.1101/865832

  34. Chowdhury VP (2016) A statistical correlation between virulence genes and clinical features among patients with shigellosis in Mirzapur, Bangladesh. BRAC University, Bangladesh

    Google Scholar 

  35. Yaghoubi S, Ranjbar R, Dallal MMS, Fard SY, Shirazi MH, Mahmoudi M (2017) Profiling of virulence-associated factors in Shigella species isolated from acute pediatric diarrheal samples in Tehran, Iran. Osong Public Health Res Perspect 8(3):220–226. https://doi.org/10.24171/j.phrp.2017.8.3.09

    Article  PubMed  PubMed Central  Google Scholar 

  36. Moosavian M, Seyed-Mohammadi S, Sheikh AF, Khoshnood S, Dezfuli AA, Saki M, Ghaderian G, Shahi F, Abdi M, Abbasi F (2019) Prevalence of enterotoxin-encoding genes among diverse Shigella strains isolated from patients with diarrhea, southwest Iran. Acta Microbiol Immunol Hung 66(1):91–101. https://doi.org/10.1556/030.65.2018.037

    Article  CAS  PubMed  Google Scholar 

  37. Ranjbar R, Bolandian M, Behzadi P (2017) Virulotyping of Shigella spp. isolated from pediatric patients in Tehran, Iran. Acta Microbiol Immunol Hung 64(1):71–80. https://doi.org/10.1556/030.64.2017.007

    Article  CAS  PubMed  Google Scholar 

  38. Sangeetha AV, Parija SC, Mandal I, Krishnamurthy S (2014) Clinical and microbiological profiles of shigellosis in children. J Health Popul Nutr 32(4):580–586

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bhattacharya D, Bhattacharya H, Thamizhmani R, Sayi DS, Reesu R, Anwesh M, Kartick C, Bharadwaj AP, Singhania M, Sugunan AP, Roy S (2014) Shigellosis in bay of Bengal Islands, India: clinical and seasonal patterns, surveillance of antibiotic susceptibility patterns, and molecular characterization of multidrug-resistant Shigella strains isolated during a 6-year period from 2006 to 2011. Eur J Clin Microbiol Infect Dis 33(2):157–170. https://doi.org/10.1007/s10096-013-1937-2

    Article  CAS  PubMed  Google Scholar 

  40. Ghosh S, Pazhani GP, Niyogi SK, Nataro JP, Ramamurthy T (2014) Genetic characterization of Shigella spp. isolated from diarrhoeal and asymptomatic children. J Med Microbiol 63(Pt 7):903–910. https://doi.org/10.1099/jmm.0.070912-0

    Article  CAS  PubMed  Google Scholar 

  41. Hosseini Nave H, Mansouri S, Emaneini M, Moradi M (2016) Distribution of genes encoding virulence factors and molecular analysis of Shigella spp. isolated from patients with diarrhea in Kerman, Iran. Microb Pathog 92:68–71. https://doi.org/10.1016/j.micpath.2015.11.015

    Article  CAS  PubMed  Google Scholar 

  42. Frankel G, Riley L, Giron JA, Valmassoi J, Friedmann A, Strockbine N, Falkow S, Schoolnik GK (1990) Detection of Shigella in feces using DNA amplification. J Infect Dis 161(6):1252–1256. https://doi.org/10.1093/infdis/161.6.1252

    Article  CAS  PubMed  Google Scholar 

  43. Watanabe H, Nakamura A (1986) Identification of Shigella sonnei form I plasmid genes necessary for cell invasion and their conservation among Shigella species and enteroinvasive Escherichia coli. Infect Immun 53(2):352–358

    Article  CAS  Google Scholar 

  44. Shahnaij M, Latif HA, Azmi IJ, Amin MB, Luna SJ, Islam MA, Talukder KA (2018) Characterization of a serologically atypical Shigella flexneri Z isolated from diarrheal patients in Bangladesh and a proposed serological scheme for Shigella flexneri. PLoS One 13(8):e0202704. https://doi.org/10.1371/journal.pone.0202704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Antoine B, Adjehi D, Nathalie G, Valerie G, Etienne D, Marcellin D, Mireille D (2010) Virulence factors and resistance profile of Shigella isolated during infectious diarrhea in Abidjan, Côte D’Ivoire. J Appl Sci Res 6(6):594–599

    Google Scholar 

  46. Burkinshaw BJ, Strynadka NC (2014) Assembly and structure of the T3SS. Biochim Biophys Acta 1843(8):1649–1663. https://doi.org/10.1016/j.bbamcr.2014.01.035

    Article  CAS  PubMed  Google Scholar 

  47. Lunelli M, Lokareddy RK, Zychlinsky A, Kolbe M (2009) IpaB-IpgC interaction defines binding motif for type III secretion translocator. Proc Natl Acad Sci U S A 106(24):9661–9666. https://doi.org/10.1073/pnas.0812900106

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ogawa M, Handa Y, Ashida H, Suzuki M, Sasakawa C (2008) The versatility of Shigella effectors. Nat Rev Microbiol 6(1):11–16. https://doi.org/10.1038/nrmicro1814

    Article  CAS  PubMed  Google Scholar 

  49. Bona M, Medeiros PH, Santos AK, Freitas T, Prata M, Veras H, Amaral M, Oliveira D, Havt A, Lima AA (2019) Virulence-related genes are associated with clinical and nutritional outcomes of Shigella/enteroinvasive Escherichia coli pathotype infection in children from Brazilian semiarid region: a community case-control study. Int J Med Microbiol 309(2):151–158. https://doi.org/10.1016/j.ijmm.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  50. Uchiya K, Tobe T, Komatsu K, Suzuki T, Watarai M, Fukuda I, Yoshikawa M, Sasakawa C (1995) Identification of a novel virulence gene, virA, on the large plasmid of Shigella, involved in invasion and intercellular spreading. Mol Microbiol 17(2):241–250. https://doi.org/10.1111/j.1365-2958.1995.mmi_17020241.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Ali Imani Fooladi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by Ethics Committee of Baqiyatallah University of Medical Sciences (permit: 9610-001878), and all the experiments were performed in accordance with guidelines and regulations of this committee (dated 07 March 2018).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arabshahi, S., Novinrooz, A., Ranjbar, R. et al. Molecular characterization of Shigella species isolated from diarrheal patients in Tehran, Iran: phylogenetic typing and its association with virulence gene profiles and a novel description of Shigella invasion associated locus. Eur J Clin Microbiol Infect Dis 39, 1727–1737 (2020). https://doi.org/10.1007/s10096-020-03908-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-020-03908-6

Keywords

Navigation