Abstract
To our knowledge, this is the first work on drug susceptibility patterns of rapid growing mycobacteria from Latin America. The susceptibility patterns for 14 antimicrobial agents of the three most important species that cause skin infections in Venezuela were determined as follows: 63 strains belonging to Mycobacterium abscessus group, 66 strains of the Mycobacterium fortuitum group, and 13 Mycobacterium chelonae strains. The M. abscessus group strains were resistant to most antibiotics tested while M. fortuitum strains were relatively susceptible to a large number of antibiotics. We demonstrate the presence of an inducible and truncated erm(41) gene in M. abscessus group, namely M. abscessus subsp. massiliense. We show the variations in susceptibility to antimicrobial agents within and between the mycobacterial species and compare our susceptibility patterns with those reported from other countries. We conclude that the identification of mycobacteria to the species level can guide the antibiotic treatment, but that it is always important to consider drug susceptibility testing when rapidly mycobacteria are isolated.
This is a preview of subscription content, access via your institution.
References
- 1.
Griffiifth D, Aksamit T, Brown-Elliot B, Catanzaro A, Daley C, Gordin F et al (2007) An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175(4):367–416. https://doi.org/10.1164/rccm.200604-571ST
- 2.
Song J, Sohn J, Jeong H, Cheong H, Kim W, Kim M (2006) An outbreak of post-acupuncture cutaneous infection due to Mycobacterium abscessus. BMC Infect Dis 6(6):1471–2334. https://doi.org/10.1186/1471-2334-6-6
- 3.
Tang P, Walsh S, Murray C, Alterman C, Varia M, Broukhanski G et al (2006) Outbreak of acupuncture-associated cutaneous Mycobacterium abscessus infections. J Cutan Med Surg 10(4):166–169. https://doi.org/10.2310/7750.2006.00041
- 4.
Furuya Y, Paéz A, Srinivasan A, Cooksey R, Augenbraun M, Baron M (2008) Outbreak of Mycobacterium abscessus wound infections among “Lipotourists” from the United States Who underwent abdominoplasty in the Dominican Republic. Clin Infect Dis 46(8):1181–1188. https://doi.org/10.1086/529191
- 5.
Galmés-Truyols A, Giménez-Duran J, Bosch-Isabel C, Nicolau-Riutort A, Vanrell-Berga J, Portell-Arbona M et al (2011) An outbreak of cutaneous infection due to Mycobacterium abscessus associated to mesotherapy. Enferm Infecc Microbiol Clin 29(7):510–514. https://doi.org/10.1016/j.eimc.2011.03.006
- 6.
Munayco C, Grijalva C, Culqui D, Bolarte J, Suárez-Ognio L, Quispe N et al (2008) Outbreak of persistent cutaneous abscesses due to Mycobacterium chelonae after mesotherapy sessions, Lima, Peru. Rev Saude Publica 42(1):146–149. https://doi.org/10.1590/S0034-89102008000100020
- 7.
Correa N, Cataño J, Mejía G, Realpe T, Orozco B, Estrada S et al (2010) Outbreak of mesotherapy-associated cutaneous infections caused by Mycobacterium chelonae in Colombia. Jpn J Infect Dis 63(2):143–145
- 8.
Carbonne A, Brossier F, Arnaud I, Bougmiza I, Caumes E, Meningaud J et al (2009) Outbreak of nontuberculous mycobacterial subcutaneous infections related to multiple mesotherapy injections. J Clin Microbiol 47(6):1961–1964. https://doi.org/10.1128/JCM.00196-09
- 9.
Ivan M, Dancer C, Koehler A, Hobby M, Lease C (2013) Mycobacterium chelonae abscesses associated with biomesotherapy, Australia, 2008. Emerg Infect Dis 19(9):1493–1495. https://doi.org/10.3201/eid1909.120898
- 10.
Quiñones C, Ramalle-Gómara E, Perucha M, Lezaun M, Fernández-Vilariño E, García-Morrás P et al (2010) An outbreak of Mycobacterium fortuitum cutaneous infection associated with mesotherapy. J Eur Acad Dermatol Venereol 24(5):604–606. https://doi.org/10.1111/j.1468-3083.2009.03461.x
- 11.
Macadam S, Mehling B, Fanning A, Dufton J, Kowalewska-Grochowska K, Lennox P et al (2007) Nontuberculous mycobacterial breast implant infections. Plast Reconstr Surg 119(1):337–344. https://doi.org/10.1097/01.prs.0000244924.61968.d2
- 12.
Murillo J, Torres J, Bofill L, Ríos-Fabra A, Irausquin E, Istúriz R et al (2000) Skin and wound infection by rapidly growing mycobacteria: an unexpected complication of liposuction and liposculture. Arch Dermatol 136:1347–1352. https://doi.org/10.1001/archderm.136.11.1347
- 13.
Piquero J, Casals V, Higuera E, Yakrus M, Sikes D, de Waard J (2004) Iatrogenic Mycobacterium simiae skin infection in an immunocompetent patient. Emerg Infect Dis 10(5):969–970. https://doi.org/10.3201/eid1005.030681
- 14.
Cooksey R, de Waard J, Yakrus M, Rivera I, Chopite M, Toney S et al (2004) Mycobacterium cosmeticum sp. nov., a novel rapidly growing species isolated from a cosmetic infection and from a nail salon. Int J Syst Evol Microbiol 54(6):2385–2391. https://doi.org/10.1099/ijs.0.63238-0
- 15.
Rivera-Olivero I, Guevara A, Escalona A, Oliver M, Perez-Alfonzo R, Piquero J et al (2006) Infecciones en tejidos blandos por micobacterias no tuberculosas secundarias a mesoterapia ¿cuánto vale la belleza? Enferm Infecc Microbiol Clin 24(5):302–306. https://doi.org/10.1157/13089664
- 16.
Guevara-Patiño A, Sandoval de Mora M, Farreras A, Rivera-Olivero I, Fermin D, de Waard J (2010) Soft tissue infection due to Mycobacterium fortuitum following acupunture: a case report and review of the literature. J Infect Dev Ctries 4(8):521–525. https://doi.org/10.3855/jidc.718
- 17.
Da Mata-Jardín O, Hernández-Pérez R, Corrales H, Cardoso-Leao S, de Waard J (2010) Follow-up of an outbreak of Mycobacterium abscessus soft-tissue infection associated with mesotherapy in Venezuela. Enferm Infecc Microbiol Clin 28(9):596–501. https://doi.org/10.1016/j.eimc.2009.08.003
- 18.
Torres-Coy J, Carrera C, Rodríguez-Castillo B, Ramírez-Murga R, Ortiz-Cáceres W, Pérez-Alfonzo R et al (2017) Mycobacterium szulgai: an unusual cause of skin and soft tissue infection after breast augmentation. Int J Dermatol 56(6):e122–e124. https://doi.org/10.1111/ijd.13605
- 19.
Ruiz-Aragón J, García-Agudo L, Flores S, Rodríguez M, Marín P, García-Martos P (2007) Susceptibilty to antimicrobial agents of rapidly growing mycobacteria. Rev Esp Quimioterap 20(4):429–432
- 20.
García-Agudo L, García-Martos P, Jesús I, Rodríguez-Iglesias M (2009) Assesment of in vitro susceptibility to antimicrobials of rapidly growing mycobacteria by E-test. Rev Med Chil 137(7):912–917
- 21.
Hatakeyama S, Ohama Y, Okazaki M, Nukui Y, Moriya K (2017) Antimicrobial susceptibility testing of rapidly growing mycobacteria isolated in Japan. BMC Infect Dis 17(1):197. https://doi.org/10.1186/s12879-017-2298-8
- 22.
Pang H, Li G, Zhao X, Liu H, Wan K, Yu P (2015) Drug susceptibility testing of 31 antimicrobial agents on rapidly growing mycobacteria isolates from China. Biomed Res Int 2015:419392. https://doi.org/10.1155/2015/419392
- 23.
Park S, Kim S, Park E, Kim H, Kwon O, Chang C et al (2008) In vitro antimicrobial susceptibility of Mycobacterium abscessus in Korea. J Korean Med Sci 23(1):49–52. https://doi.org/10.3346/jkms.2008.23.1.49
- 24.
Yang S, Hsueh P, Lai H, Teng L, Huang L, Chen J et al (2003) High prevalence of antimicrobial resistance in rapidly growing mycobacteria in Taiwan. Antimicrob Agents Chemother 47(6):1958–1962. https://doi.org/10.1128/AAC.47.6.1958-1962.2003
- 25.
Huang Y, Liu M, Shen G, Lin C, Kao C, Liu P et al (2010) Clinical outcome of Mycobacterium abscessus infection and antimicrobial susceptibility testing. J Microbiol Immunol Infect 43(5):401–406. https://doi.org/10.1016/S1684-1182(10)60063-1
- 26.
Lee S, Kim J, Jeong J, Park Y, Bai G, Lee E et al (2007) Evaluation of the broth microdilution method using 2,3-diphenyl-5-thienyl-(2)-tetrazolium chloride for rapidly growing mycobacteria susceptibility testing. J Korean Med 22(5):784–790. https://doi.org/10.3346/jkms.2007.22.5.784
- 27.
Heidarieh P, Mirsaeidi M, Hashemzadeh M, Feizabadi M, Bostanabad S, Nobar M et al (2016) In vitro antimicrobial susceptibility of nontuberculous mycobacteria in Iran. Microb Drug Resist 22(2):172–178. https://doi.org/10.1089/mdr.2015.0134
- 28.
Tang S, Lye D, Jureen R, Sng L, Hsu L (2015) Rapidly growing mycobacteria in Singapore, 2006-2011. Clin Microbiol Infect 21(3):236–241. https://doi.org/10.1016/j.cmi.2014.10.018
- 29.
Lee S, Yoo H, Kim S, Koh W, Kim C, Park Y et al (2014) The drug resistance profile of Mycobacterium abscessus group strains from Korea. Ann Lab Med 34(1):31–37. https://doi.org/10.3343/alm.2014.34.1.31
- 30.
Wallace RJ, Brown-Elliott B, Ward S, Crist C, Mann L, Wilson R (2001) Activities of linezolid against rapidly growing mycobacteria. Antimicrob Agents Chemother 45(3):764–767. https://doi.org/10.1128/AAC.45.3.764-767.2001
- 31.
Telenti A, Marchesi F, Balz M, Bally F, Böttger E, Bodmer T (1993) Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol 31(2):175–178
- 32.
da Costa A, Lopes M, Furlaneto I, de Sousa M, Lima K (2010) Molecular identification of nontuberculous mycobacteria isolates in a Brazilian mycobacteria reference laboratory. Diagn Microbiol Infect Dis 68(4):390–394. https://doi.org/10.1016/j.diagmicrobio.2010.07.019
- 33.
Nash K, Brown-Elliott B, Wallace RJ (2009) A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother 53(4):1367–1376. https://doi.org/10.1128/AAC.01275-08
- 34.
Wallace RJ, Brown-Elliott B, Wilson R, Mann L, Hall L, Zhang Y et al (2004) Clinical and laboratory features of Mycobacterium porcinum. J Clin Microbiol 42(12):5689–5697. https://doi.org/10.1128/JCM.42.12.5689-5697.2004
- 35.
Woods GL, Browm-Elliot BA, Conville PS et al (2011) Susceptibility Testing of Mycobacteria, Nocardiae, and other aerobic actinomycetes; Approved Standard- Second edition, CLSI document M24-A2. Clinical and Laboratory Standards Institute (CLSI), Wayne ISBN 1-56238-746-4, ISSN 0273-3099
- 36.
Wallace RJ, Brown-Elliot B, Crist C, Mann L, Wilson R (2002) Comparison of the in vitro activity of the glycylcline tigecycline (formerly GAR-936) with those of tetracycline, minocycline, and doxycycline against isolates of nontuberculous mycobacteria. Antimicrob Agents Chemother 46(10):3164–3167. https://doi.org/10.1128/AAC.46.10.3164-3167.2002
- 37.
Huang C, Wu M, Chen H, Huang W (2018) In vitro activity of aminoglycosides, clofazimine, d-cycloserine and dapsone against 83 Mycobacterium avium complex clinical isolates. J Microbiol Immunol Infect 51(5):636–643. https://doi.org/10.1016/j.jmii.2017.05.001
- 38.
Kim H, Kim B, Kook Y, Yun Y, Shin J, Kim B et al (2010) Mycobacterium massiliense is differentiated from Mycobacterium abscessus and Mycobacterium bolletii by erythromycin ribosome methyltransferase gene (erm) and clarithromycin susceptibility patterns. Microbiol Immunol 54(6):347–353. https://doi.org/10.1111/j.1348-0421.2010.00221.x
- 39.
Bastian S, Veziris N, Roux A, Brossier F, Gaillard J, Jarlier V et al (2011) Assessment of clarithromycin susceptibility in strains belonging to the Mycobacteium abscessus group by erm(41) and rrl sequencing. Antimicrob Agents Chemother 55(2):775–781. https://doi.org/10.1128/AAC.00861-10
- 40.
De Groote M, Huitt G (2006) Infections due to rapidly growing mycobacteria. Clin Infect Dis 42(12):1756–1763. https://doi.org/10.1086/504381
- 41.
Hwang T, Dotsenko S, Jafarov A, Weyer K, Falzon D, Lunte K et al (2014) Safety and availability of clofazimine in the treatment of multidrug and extensively drug-resisitant tuberculosis: analysis of published guidance and meta-analysis of cohort studies. BMJ Open 4(1):e004143. https://doi.org/10.1136/bmjopen-2013-004143
- 42.
Wallace RJ, Dukart G, Brown-Elliott B, Griffith D, Scerpella E, Marshall B (2014) Clinical experience in 52 patients witth tigecycline-containing regimens for salvage treatment of Mycobacterium abscessus and Mycobacterium chelonae infections. J Antimicrob Chemother 69(7):1945–1953. https://doi.org/10.1093/jac/dku062
- 43.
Nie W, Duan H, Huang H, Lu Y, Chu N (2015) Species identification and clarithromycin susceptibility testing of 278 clinical nontuberculous mycobacteria isolates. Biomed Res Int 2015:506598. https://doi.org/10.1155/2015/506598
- 44.
Christianson S, Grierson W, Kein D, Tyler A, Wolfe J, Sharma M (2016) Time to detection of inducible macrolide resistance in Mycobacterium abscessus subspecies and its association with the Erm(41) sequevar. PLoS One 11(8):e0158723. https://doi.org/10.1371/journal.pone.0158723
- 45.
Li B, Yang S, Chu H, Zhang Z, Liu W, Luo L et al (2017) Relationship between antibiotic susceptibility and genotype in Mycobacterium abscessus clinical isolates. Front Microbiol 14(8):1739. https://doi.org/10.3389/fmicb.2017.01739
- 46.
Rubio M, March F, Garrigó M, Moreno C, Español M, Coll P (2015) Inducible and acquired clarithromycin resistance in the Mycobacterium abscessus complex. PLoS One 10(10):e0140166. https://doi.org/10.1371/journal.pone.0140166
- 47.
Hanson K, Slechta E, Muir H, Barker A (2014) Rapid molecular detection of inducible macrolide resistance in Mycobacterium chelonae and M. abscessus strains: a replacement for 14 day susceptibility testing? J Clin Microbiol 52(5):1705–1707. https://doi.org/10.1128/JCM.03464-13
- 48.
Esteban J, Martín-de-Hijas N, García-Almeida D, Bodas-Sánchez A, Gadea I, Fernández-Roblas R (2009) Prevalence of erm methylase genes in clinical isolates of non-pigmented, rapidly growing mycobacteria. Clin Microbiol Infect 15(10):919–923. https://doi.org/10.1111/j.1469-0691.2009.02757.x
- 49.
Ali S, Khan F, Fisher M (2007) Catheter-related bloodstream infection caused by Mycobacterium mageritense. J Clin Microbiol 45(1):273. https://doi.org/10.1128/JCM.01224-06
- 50.
Gira A, Reisenauer A, Hammock L, Nadiminti U, Macy J, Reeves A et al (2004) Furunculosis due to Mycobacterium mageritense associated with footbaths at a nail salon. J Clin Microbiol 42(4):1813–1817. https://doi.org/10.1128/JCM.42.4.1813-1817.2004
- 51.
Wallace RJ, Brown-Elliot B, Hall L, Roberts G, Wilson R, Mann L et al (2002) Clinical and laboratory features of Mycobacterium mageritense. J Clin Microbiol 40(8):2930–2935. https://doi.org/10.1128/JCM.40.8.2930-2935.2002
- 52.
Fernández-Roblas R, Martín-de-Hijas N, Fernández-Martínez A, García-Almeida D, Gadea I, Esteban J (2008) In vitro activities of tigecycline and 10 other antimicrobials against nonpigmented rapidly growing mycobacteria. Antimicrob Agents Chemother 52(11):4184–4186. https://doi.org/10.1128/AAC.00695-08
Acknowledgments
We acknowledge the significant contributions of laboratory staff of “Diagnósticos Especiales” at Instituto Nacional de Higiene “Rafael Rangel” and the laboratory staff of Laboratory of Tuberculosis at Instituto de Biomedicina. We also acknowledge to special contributions of María Fernanda González Barrios, Margarita Monzón García and Ismar Rivera Olivero.
Funding
This work was financially supported by the research program of the research coordination of “Gerencia de Docencia e Investigación” and “Gerencia de Diagnóstico y Vigilancia” of Instituto Nacional de Higiene “Rafael Rangel”, the FONACIT Project Number 2012001149 and FUNDAIM (Fundacion para la Investigacion en Micobacterias).
Author information
Affiliations
Contributions
Omaira Da Mata-Jardín was responsible for the laboratory experiments, the analysis, the interpretation of the results and drafted initial manuscript. This manuscript is part of her PhD thesis presented at the “Universidad Simón Bolívar” in Caracas, Venezuela. Alejandro Angulo participated in carrying out laboratory techniques. Margarita Rodríguez, Sandra Fernández-Figueiras and de Jacobus H Waard conceived, designed and supervised the study and provided significant guidance on the development of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval and Informed consent
The strains in this study were isolated for routine diagnosis purpose in the years 2007 and 2012 in the “Tuberculosis Laboratory” at Insituto de Biomedicina “Dr. Jacinto Convit” and Instituto Nacional de Higiene “Rafael Rangel.” For this study, bacterial strains were coded, handled blindly without the possibility to disclose patient’s identity, identified to species level, and submitted for drug resistance testing. No clinical or personal data of the patients have been used for this publication.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(DOC 488 kb)
Rights and permissions
About this article
Cite this article
Da Mata-Jardín, O., Angulo, A., Rodríguez, M. et al. Drug susceptibility patterns of rapidly growing mycobacteria isolated from skin and soft tissue infections in Venezuela. Eur J Clin Microbiol Infect Dis 39, 433–441 (2020). https://doi.org/10.1007/s10096-019-03740-7
Received:
Accepted:
Published:
Issue Date:
Keywords
- Rapidly growing mycobacteria
- Venezuela
- Antimicrobial susceptibility
- Mycobacterium abscessus
- Mycobacterium chelonae
- Mycobacterium fortuitum