Multi-step optimization of the filtration method for the isolation of Campylobacter species from stool samples

  • Anne TilmanneEmail author
  • Helga Marisca Kandet Yattara
  • Margaux Herpol
  • Linda Vlaes
  • Patricia Retore
  • Caroline Quach
  • Olivier Vandenberg
  • Marie Hallin
  • Delphine Martiny
Original Article


The filtration method (FM) is the most effective isolation technique for Epsilobacteriaceae from stool samples. FM’s different adaptations make it difficult to compare data between studies. This study was performed in three phases to optimize FM from a routine laboratory perspective. In July–September 2014 (part I), FM was performed on Mueller–Hinton agar containing 5% sheep blood and Columbia agar containing 5% sheep blood. In July 2016 (part II), FM was performed using 0.60-μm pore size polycarbonate filters (0.6-PC filter) and 0.45-μm pore size cellulose acetate filters (0.45-AC filter); in January 2018 (part III), the addition of hydrogen to incubators was studied. On 1146 stools analyzed in part I, the positive samples that showed no growth on the Butzler medium (n = 22/72, 30.6%) had improved growth of Epsilobacteriaceae when using the Columbia instead of the Mueller–Hinton medium (21/22 strains vs. 11/22, p < 0.05). In part II, on 718 stools, 91 strains grew with FM (12.7%), more with 0.6-PC filter (90/91) than with 0.45-AC filter (44/91) (p < 0.05). In part III, 578 stools were cultured, 98 Epsilobacteriaceae strains grew with FM, and 7% hydrogen finding significantly more Epsilobacteriaceae than without hydrogen (90/98, 91.8%, vs. 72/98, 73.5%; p < 0.05). The use of a Columbia medium containing 5% sheep blood with 0.6-PC filters incubated at 37 °C in a 7% hydrogen-enriched atmosphere led to an almost fourfold increase in the isolation rate of Epsilobacteriaceae among the studied combinations. Reference centers for Campylobacter should use standardized protocols to enable the comparison of prevalence in space and time.


Campylobacter Filtration method Filter Hydrogen Concisus Gastroenteritis 



This work was supported by The Belgian Kids’ Fund for Pediatric Research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed were in accordance with the ethical standards of our institutional research committee.

Informed consent

Data were totally anonymized before analysis, no consent had to be obtained considering the methodology of the present work.


  1. 1.
    World Health Organization, (2012) Food and Agriculture Organization of the United Nations & World Organisation for Animal Health. The global view of campylobacteriosis: report of an expert consultation, Utrecht, Netherlands, 9–11 July 2012. World Health Organization. Accessed Nov 2016
  2. 2.
    EFSA (European Food Safety Authority), ECDC (European Centre for Disease Prevention and Control) (2015) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA J 13(4329):1–191. CrossRefGoogle Scholar
  3. 3.
    Man SM (2011) The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol Hepatol 8:669–685. CrossRefPubMedGoogle Scholar
  4. 4.
    Sibanda N, McKenna A, Richmond A, Ricke SC, Callaway T, Stratakos AC et al (2018) A review of the effect of management practices on Campylobacter prevalence in poultry farms. Front Microbiol 9:2002. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Debruyne L, Gevers D, Vandamme P (2008) Chapter 1: taxonomy of the family Campylobacteraceae. In: Campylobacter. ASM Press. p. 5–25Google Scholar
  6. 6.
    Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM (2015) Global epidemiology of Campylobacter infection. Clin Microbiol Rev 28:687–720. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nachamkin I, Nguyen P (2017) Isolation of Campylobacter species from stool samples by use of a filtration method: assessment from a United States-based population. J Clin Microbiol 55:2204–2207. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Liu F, Ma R, Wang Y, Zhang L (2018) The clinical importance of Campylobacter concisus and other human hosted Campylobacter species. Front Cell Infect Microbiol 8:243. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nielsen HL, Ejlertsen T, Nielsen H (2015) Polycarbonate filtration technique is noninferior to mCCDA for isolation of Campylobacter species from stool samples. Diagn Microbiol Infect Dis 83:11–12. CrossRefPubMedGoogle Scholar
  10. 10.
    Butzler J-P (2004) Campylobacter, from obscurity to celebrity. Clin Microbiol Infect 10:868–876. CrossRefPubMedGoogle Scholar
  11. 11.
    Lastovica AJ (2006) Emerging Campylobacter spp.: the tip of the iceberg. Clin Microbiol Newsl 28:49–56. CrossRefGoogle Scholar
  12. 12.
    Vandenberg O, Dediste A, Houf K, Ibekwem S, Souayah H, Cadranel S et al (2004) Arcobacter species in humans. Emerg Infect Dis 10:1863–1867. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fitzgerald C, Whichard J, Nachamkin I (2008) Chapter 12: diagnosis and antimicrobial susceptibility of Campylobacter species. In: Campylobacter. ASM Press. p. 227–43Google Scholar
  14. 14.
    Moore JE (2000) Comparison of basal broth media for the optimal laboratory recovery of Campylobacter jejuni and Campylobacter coli. Ir J Med Sci 169:187–189CrossRefPubMedGoogle Scholar
  15. 15.
    Lynch OA, Cagney C, McDowell DA, Duffy G (2010) A method for the growth and recovery of 17 species of Campylobacter and its subsequent application to inoculated beef. J Microbiol Methods 83:1–7. CrossRefPubMedGoogle Scholar
  16. 16.
    Bovill RA, Mackey BM (1997) Resuscitation of “non-culturable” cells from aged cultures of Campylobacter jejuni. Microbiol Read Engl 143(Pt 5):1575–1581. CrossRefGoogle Scholar
  17. 17.
    Ng LK, Stiles ME, Taylor DE (1985) Comparison of basal media for culturing Campylobacter jejuni and Campylobacter coli. J Clin Microbiol 21:226–230PubMedPubMedCentralGoogle Scholar
  18. 18.
    Hsieh Y-H, Simpson S, Kerdahi K, Sulaiman IM (2018) A comparative evaluation study of growth conditions for culturing the isolates of Campylobacter spp. Curr Microbiol 75:71–78. CrossRefPubMedGoogle Scholar
  19. 19.
    Dekeyser P, Gossuin-Detrain M, Butzler JP, Sternon J (1972) Acute enteritis due to related vibrio: first positive stool cultures. J Infect Dis 125:390–392CrossRefPubMedGoogle Scholar
  20. 20.
    Speegle L, Miller ME, Backert S, Oyarzabal OA (2009) Use of cellulose filters to isolate Campylobacter spp. from naturally contaminated retail broiler meat. J Food Prot 72:2592–2596CrossRefPubMedGoogle Scholar
  21. 21.
    Nielsen HL, Engberg J, Ejlertsen T, Nielsen H (2013) Comparison of polycarbonate and cellulose acetate membrane filters for isolation of Campylobacter concisus from stool samples. Diagn Microbiol Infect Dis 76:549–550. CrossRefPubMedGoogle Scholar
  22. 22.
    Goossens H, De Boeck M, Butzler JP (1983) A new selective medium for the isolation of Campylobacter jejuni from human faeces. Eur J Clin Microbiol 2:389–393CrossRefPubMedGoogle Scholar
  23. 23.
    López L, Castillo FJ, Clavel A, Rubio MC (1998) Use of a selective medium and a membrane filter method for isolation of Campylobacter species from Spanish paediatric patients. Eur J Clin Microbiol Infect Dis 17:489–492CrossRefPubMedGoogle Scholar
  24. 24.
    Casanova C, Schweiger A, von Steiger N, Droz S, Marschall J (2015) Campylobacter concisus pseudo-outbreak caused by improved culture conditions. J Clin Microbiol 53:660–662. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Humphries RM, Linscott AJ (2015) Laboratory diagnosis of bacterial gastroenteritis. Clin Microbiol Rev 28:3–31. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lastovica AJ, le Roux E (2000) Efficient isolation of Campylobacteria from stools. J Clin Microbiol 38:2798–2799PubMedPubMedCentralGoogle Scholar
  27. 27.
    Engberg J, On SL, Harrington CS, Gerner-Smidt P (2000) Prevalence of Campylobacter, Arcobacter, Helicobacter, and Sutterella spp. in human fecal samples as estimated by a reevaluation of isolation methods for campylobacters. J Clin Microbiol 38:286–291PubMedPubMedCentralGoogle Scholar
  28. 28.
    Martiny D, Dediste A, Debruyne L, Vlaes L, Haddou NB, Vandamme P et al (2011) Accuracy of the API Campy system, the Vitek 2 Neisseria-Haemophilus card and matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the identification of campylobacter and related organisms. Clin Microbiol Infect 17:1001–1006. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Anne Tilmanne
    • 1
    • 2
    Email author
  • Helga Marisca Kandet Yattara
    • 3
  • Margaux Herpol
    • 3
    • 4
  • Linda Vlaes
    • 3
    • 4
  • Patricia Retore
    • 3
    • 4
  • Caroline Quach
    • 2
    • 5
  • Olivier Vandenberg
    • 4
    • 6
    • 7
  • Marie Hallin
    • 3
  • Delphine Martiny
    • 3
    • 4
    • 8
  1. 1.Division of Infection Prevention and ControlHôpital Universitaire des Enfants Reine FabiolaBrusselsBelgium
  2. 2.Division of Pediatric Infectious DiseasesCHU Sainte JustineMontrealCanada
  3. 3.Department of MicrobiologyLaboratoire Hospitalier Universitaire de Bruxelles – Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB)BrusselsBelgium
  4. 4.National Reference Centre for CampylobacterCHU Saint-PierreBrusselsBelgium
  5. 5.Department of Microbiology, Infectious Diseases & ImmunologyUniversité de MontréalMontrealCanada
  6. 6.Innovation and Business Development Unit, LHUB-ULBPole Hospitalier Universitaire de Bruxelles, Université Libre de BruxellesBrusselsBelgium
  7. 7.Centre for Environmental Health and Occupational Health, School of Public HealthUniversité Libre de Bruxelles (ULB)BrusselsBelgium
  8. 8.Faculté de Médecine et PharmacieUniversité de Mons (UMONS)MonsBelgium

Personalised recommendations