In vitro antibacterial effects of statins against bacterial pathogens causing skin infections

  • Humphrey H. T. Ko
  • Ricky R. Lareu
  • Brett R. Dix
  • Jeffery D. Hughes
Original Article


With financial considerations impeding research and development of new antibiotics, drug repurposing (finding new indications for old drugs) emerges as a feasible alternative. Statins are extensively prescribed around the world to lower cholesterol, but they also possess inherent antimicrobial properties. This study identifies statins with the greatest potential to be repurposed as topical antibiotics and postulates a mechanism of action for statins’ antibacterial activity. Using broth microdilution, the direct antibacterial effects of all seven parent statins currently registered for human use and three selected statin metabolites were tested against bacterial skin pathogens Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Serratia marcescens. Simvastatin and pitavastatin lactone exerted the greatest antibacterial effects (minimum inhibitory concentrations of 64 and 128 μg/mL, respectively) against S. aureus. None of the statins tested were effective against E. coli, P. aeruginosa, or S. marcescens, but simvastatin hydroxy acid acid might be active against S. aureus, E. coli, and S. marcescens at drug concentrations > 256 μg/mL. It was found that S. aureus may exhibit a paradoxical growth effect when exposed to simvastatin; thus, treatment failure at high drug concentrations is theoretically probable. Through structure-activity relationship analysis, we postulate that statins’ antibacterial action may involve disrupting the teichoic acid structures or decreasing the number of alanine residues present on Gram-positive bacterial cell surfaces, which could reduce biofilm formation, diminish bacterial adhesion to environmental surfaces, or impede S. aureus cell division.


Drug repurposing Mechanism of action Paradoxical growth effect Skin infections Statins Topical antibiotics 



The authors would like to acknowledge the kind contributions of the Australian Government Research Training Program Scholarship, the Curtin Health Innovation Research Institute (CHIRI) Biosciences Research Precinct Core Facility, and the School of Pharmacy and Biomedical Sciences (Curtin University) in supporting this research.

Compliance with ethical standards

Ethical approval

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Not applicable.

Supplementary material

10096_2018_3227_MOESM1_ESM.docx (974 kb)
ESM 1 (DOCX 974 kb)


  1. 1.
    Tognetti L, Martinelli C, Berti S, Hercogova J, Lotti T, Leoncini F, Moretti S (2012) Bacterial skin and soft tissue infections: review of the epidemiology, microbiology, aetiopathogenesis and treatment: a collaboration between dermatologists and infectivologists. J Eur Acad Dermatol Venereol 26(8):931–941CrossRefPubMedGoogle Scholar
  2. 2.
    Nathwani D, Dryden M, Garau J (2016) Early clinical assessment of response to treatment of skin and soft-tissue infections: how can it help clinicians? Perspectives from Europe. Int J Antimicrob Agents 48(2):127–136CrossRefPubMedGoogle Scholar
  3. 3.
    Lam PL, Lee KKH, Wong RSM, Cheng GYM, Bian ZX, Chui CH, Gambari R (2018) Recent advances on topical antimicrobials for skin and soft tissue infections and their safety concerns. Crit Rev Microbiol 44(1):40–78CrossRefPubMedGoogle Scholar
  4. 4.
    Piddock LJ (2012) The crisis of no new antibiotics—what is the way forward? Lancet Infect Dis 12(3):249–253CrossRefPubMedGoogle Scholar
  5. 5.
    Blaha MJ, Martin SS (2013) How do statins work? Changing paradigms with implications for statin allocation. J Am Coll Cardiol 62(25):2392–2394CrossRefPubMedGoogle Scholar
  6. 6.
    Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, Blumenthal R, Danesh J, Smith GD, DeMets D, Evans S, Law M, MacMahon S, Martin S, Neal B, Poulter N, Preiss D, Ridker P, Roberts I, Rodgers A, Sandercock P, Schulz K, Sever P, Simes J, Smeeth L, Wald N, Yusuf S, Peto R (2016) Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 388(10059):2532–2561CrossRefPubMedGoogle Scholar
  7. 7.
    Hennessy E, Adams C, Reen FJ, O'Gara F (2016) Is there potential for repurposing statins as novel antimicrobials? Antimicrob Agents Chemother 60(9):5111–5121CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fitzmaurice GJ, McWilliams B, Nolke L, Redmond JM, McGuinness JG, O’Donnell ME (2014) Do statins have a role in the promotion of postoperative wound healing in cardiac surgical patients? Ann Thorac Surg 98(2):756–764CrossRefPubMedGoogle Scholar
  9. 9.
    Ramana KV, Pinnelli VB, Prakash B, CR WDS, Kandi S, Sharada CV, Kalaskar A, Rao SD, Mani R, Rao R (2013) Complicated skin and skin structure infections (cSSSI’s): a comprehensive review. Am J Med Biol Res 1(4):159–164CrossRefGoogle Scholar
  10. 10.
    Petkovsek Z, Elersic K, Gubina M, Zgur-Bertok D, Starcic Erjavec M (2009) Virulence potential of Escherichia coli isolates from skin and soft tissue infections. J Clin Microbiol 47(6):1811–1817CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Biscoe A, Hakeem L (2016) Severe soft tissue infection in a patient with type 2 diabetes mellitus caused by Serratia marcescens as single pathogen. Br J Diabetes 16:202–205CrossRefGoogle Scholar
  12. 12.
    Betteridge DJ, Carmena R (2016) The diabetogenic action of statins—mechanisms and clinical implications. Nat Rev Endocrinol 12(2):99–110CrossRefPubMedGoogle Scholar
  13. 13.
    Clinical and Laboratory Standards Institute (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-ninth edition. CLSI document M07-A9. Wayne, Pennsylvania, USA: Clinical and Laboratory Standards Institute.Google Scholar
  14. 14.
    Basch H, Gadebusch HH (1968) In vitro antimicrobial activity of dimethylsulfoxide. Appl Microbiol 16(12):1953–1954PubMedPubMedCentralGoogle Scholar
  15. 15.
    Yamashita M, Takeno A (2001) Relationship between bactericidal activity and the hydrophobicity-hydrophilicity balance of alcohol solutions. Biocontrol Sci 6(2):107–111CrossRefGoogle Scholar
  16. 16.
    Matzneller P, Manafi M, Zeitlinger M (2011) Antimicrobial effect of statins: organic solvents might falsify microbiological testing results. Int J Clin Pharmacol Ther 49(11):666–671CrossRefPubMedGoogle Scholar
  17. 17.
    Shanholtzer CJ, Peterson LR, Mohn ML, Moody JA, Gerding DN (1984) MBCs for Staphylococcus aureus as determined by macrodilution and microdilution techniques. Antimicrob Agents Chemother 26(2):214–219CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kim S, Kim J, Lim W, Jeon S, Kim O, Koh JT, Kim CS, Choi H (2013) In vitro bactericidal effects of 625, 525, and 425 nm wavelength (red, green, and blue) light-emitting diode irradiation. Photomed Laser Surg 31(11):554–562CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Graziano TS, Cuzzullin MC, Franco GC, Schwartz-Filho HO, de Andrade ED, Groppo FC, Cogo-Muller K (2015) Statins and antimicrobial effects: simvastatin as a potential drug against Staphylococcus aureus biofilm. PLoS One 10(5):e0128098CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Coban AY, Tekeli HO, Guney AK, Durupinar B (2010) Investigation of the in vitro antibacterial effects of statins. Mikrobiyol Bul 44(1):161–163PubMedGoogle Scholar
  21. 21.
    Wang CC, Yang PW, Yang SF, Hsieh KP, Tseng SP, Lin YC (2016) Topical simvastatin promotes healing of Staphylococcus aureus-contaminated cutaneous wounds. Int Wound J 13(6):1150–1157CrossRefPubMedGoogle Scholar
  22. 22.
    Turnidge J, Paterson DL (2007) Setting and revising antibacterial susceptibility breakpoints. Clin Microbiol Rev 20(3):l391–l408CrossRefGoogle Scholar
  23. 23.
    Welsh AM, Kruger P, Faoagali J (2009) Antimicrobial action of atorvastatin and rosuvastatin. Pathology 41(7):689–691CrossRefPubMedGoogle Scholar
  24. 24.
    Jerwood S, Cohen J (2008) Unexpected antimicrobial effect of statins. J Antimicrob Chemother 61(2):362–364CrossRefPubMedGoogle Scholar
  25. 25.
    Zhou Q, Chen QX, Ruan ZR, Yuan H, Xu HM, Zeng S (2013) CYP2C9*3(1075A > C), ABCB1 and SLCO1B1 genetic polymorphisms and gender are determinants of inter-subject variability in pitavastatin pharmacokinetics. Pharmazie 68(3):187–194PubMedGoogle Scholar
  26. 26.
    Thangamani S, Mohammad H, Abushahba MF, Hamed MI, Sobreira TJ, Hedrick VE, Paul LN, Seleem MN (2015) Exploring simvastatin, an antihyperlipidemic drug, as a potential topical antibacterial agent. Sci Rep 5:16407CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Causevic-Ramosevac A, Semiz S (2013) Drug interactions with statins. Acta Pharm 63(3):277–293CrossRefPubMedGoogle Scholar
  28. 28.
    Duimel-Peeters I, Houwing R, Teunissen C, Berger M, Snoeckx L, Halfens R (2003) A systematic review of the efficacy of topical skin application of dimethyl sulfoxide on wound healing and as an anti-inflammatory. Wounds 15:316–370Google Scholar
  29. 29.
    Redelman CV, Maduakolam C, Anderson GG (2012) Alcohol treatment enhances Staphylococcus aureus biofilm development. FEMS Immunol Med Microbiol 66(3):411–418CrossRefPubMedGoogle Scholar
  30. 30.
    Korem M, Gov Y, Shirron N, Shuster A, Rosenberg M (2007) Alcohol increases hemolysis by staphylococci. FEMS Microbiol Lett 269(1):153–159CrossRefPubMedGoogle Scholar
  31. 31.
    Vanstraelen K, Lagrou K, Maertens J, Wauters J, Willems L, Spriet I (2013) The Eagle-like effect of echinocandins: what’s in a name? Expert Rev Anti-Infect Ther 11(11):1179–1191CrossRefPubMedGoogle Scholar
  32. 32.
    Holm SE, Tornqvist IO, Cars O (1991) Paradoxical effects of antibiotics. Scand J Infect Dis 22(Suppl.74):113–117Google Scholar
  33. 33.
    Ferreira JA, Carr JH, Starling CE, de Resende MA, Donlan RM (2009) Biofilm formation and effect of caspofungin on biofilm structure of Candida species bloodstream isolates. Antimicrob Agents Chemother 53(10):4377–4384CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Stover KR, Cleary JD (2015) The Eagle-like effect of the echinocandins: is it relevant for clinical decisions? Curr Fungal Infect Rep 9(2):88–93CrossRefGoogle Scholar
  35. 35.
    Tanouchi Y, Pai A, Buchler NE, You L (2012) Programming stress-induced altruistic death in engineered bacteria. Mol Syst Biol 8:626CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Boland T, Latour RA, Stutzenberger FJ (2000) Molecular basis of bacterial adhesion. In: Yuehuei HA, Friedman RJ (eds) Handbook of bacterial adhesion: principles, methods, and applications. Humana Press Inc, Totowa, pp 29–41CrossRefGoogle Scholar
  37. 37.
    Chen KX, Njoroge FG (2011) NS3 protease covalent inhibitors. In: Tan SL, He Y (eds) Hepatitis C: antiviral drug discovery and development. Caister Academic Press, United Kingdom, pp 169–192Google Scholar
  38. 38.
    Brown S, Santa Maria JP Jr, Walker S (2013) Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol 67:313–336CrossRefPubMedGoogle Scholar
  39. 39.
    Shi JH, Wang Q, Pan DQ, Liu TT, Jiang M (2017) Characterization of interactions of simvastatin, pravastatin, fluvastatin, and pitavastatin with bovine serum albumin: multiple spectroscopic and molecular docking. J Biomol Struct Dyn 35(7):1529–1546CrossRefPubMedGoogle Scholar
  40. 40.
    Hanson BR, Neely MN (2012) Coordinate regulation of Gram-positive cell surface components. Curr Opin Microbiol 15(2):204–210CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kruszewska H, Zareba T, Tyski S (2004) Examination of antimicrobial activity of selected non-antibiotic drugs. Acta Pol Pharm 61(Suppl):18–21PubMedGoogle Scholar
  42. 42.
    Kocsis E, Kristóf K, Hermann P, Rozgonyi F (2010) A comparative review on the pathogenicity and virulence factors of meticillin-resistant and meticillin-susceptible Staphylococcus aureus. Rev Med Microbiol 21(2):31–37CrossRefGoogle Scholar
  43. 43.
    Haeri MR, White K, Qharebeglou M, Ansar MM (2015) Cholesterol suppresses antimicrobial effect of statins. Iran J Basic Med Sci 18(12):1253–1256PubMedPubMedCentralGoogle Scholar
  44. 44.
    Shine WE, Silvany R, McCulley JP (1993) Relation of cholesterol-stimulated Staphylococcus aureus growth to chronic blepharitis. Invest Ophthalmol Vis Sci 34(7):2291–2296PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Humphrey H. T. Ko
    • 1
    • 2
  • Ricky R. Lareu
    • 1
    • 2
  • Brett R. Dix
    • 1
  • Jeffery D. Hughes
    • 1
  1. 1.School of Pharmacy and Biomedical Sciences, Faculty of Health SciencesCurtin UniversityPerthAustralia
  2. 2.Curtin Health Innovation Research Institute (CHIRI) Biosciences Research PrecinctCurtin UniversityPerthAustralia

Personalised recommendations