Predictors of colonization with Staphylococcus species among patients scheduled for cardiac and orthopedic interventions at tertiary care hospitals in north-eastern Germany—a prevalence screening study

  • S. Neidhart
  • S. Zaatreh
  • A. Klinder
  • S. Redanz
  • R. Spitzmüller
  • S. Holtfreter
  • P. Warnke
  • A. Alozie
  • V. Henck
  • A. Göhler
  • M. Ellenrieder
  • M. AbouKoura
  • D. Divchev
  • D. Gümbel
  • M. Napp
  • G. Steinhoff
  • C. Nienaber
  • A. Ekkernkamp
  • W. Mittelmeier
  • C. Güthoff
  • A. Podbielski
  • D. Stengel
  • R. Bader
Original Article

Abstract

As methicillin-resistant Staphylococcus aureus (MRSA) colonization and infection in humans are a global challenge. In Mecklenburg and Western Pomerania (Germany) 1,517 patients who underwent surgical interventions were systematically screened for MRSA and MSSA colonization on the day of hospital admission and discharge. Demographic data, risk factors and colonization status of the (i) nose, (ii) throat, (iii) groin, and (iv) thorax or site of surgical intervention were determined. Of the 1,433 patients who were included for further evaluation, 331 (23.1%) were colonized with MSSA, while only 17 (1.2%) were MRSA carriers on the day of hospital admission. A combination of nose, throat and groin swabs returned a detection rate of 98.3% for MSSA/MRSA. Trauma patients had lower prevalence of MRSA/MSSA (OR 0.524, 95% CI: 0.37–0.75; p < 0.001) than patients with intended orthopedic interventions. Males showed significantly higher nasal S. aureus carrier rates than females (odds ratio (OR) = 1.478; 95% CI: 1.14–1.92; p = 0.003). Nasal S. aureus colonization was less frequent among male smokers as compared to non-smokers (chi2 = 16.801; phi = 0.154; p < 0.001). Age, gender and smoking had a significant influence on S. aureus colonization. Combining at least three different swabbing sites should be considered for standard screening procedure to determine S. aureus colonization at patients scheduled for cardiac or orthopedic interventions at tertiary care hospitals.

Keywords

Methicillin-resistant Staphylococcus aureus Methicillin-susceptible Staphylococcus aureus Prevalence Screening Gender-related colonization Tertiary care hospitals 

Notes

Acknowledgements

We would like to thank Eike Wehmer, Andrea Thesenvitz, Gabriele Möhrlein, Jacqueline Hacker, and Sandra Bubritzki for assistance in patient recruitment and sample collection, as well as the team of the Friedrich-Löffler-Institute (University Medicine Greifswald) for microbiological analysis of specimens. This study has been deposited at the German Register of Clinical Studies (DRKS00004261).

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.

Ethical approval

This study was approved by the local ethics committees of University of Rostock and University of Greifswald (A2011-141 and BB028/12b). All participants provided written informed consent.

Supplementary material

10096_2017_3154_MOESM1_ESM.docx (179 kb)
ESM 1 (DOCX 179 kb)

References

  1. 1.
    Wolkewitz M, Frank U, Philips G, Schumacher M, Davey P, Frank U et al (2011) Mortality associated with in-hospital bacteraemia caused by Staphylococcus aureus: a multistate analysis with follow-up beyond hospital discharge. J Antimicrob Chemother 66:381–386.  https://doi.org/10.1093/jac/dkq424 CrossRefPubMedGoogle Scholar
  2. 2.
    Su C-H, Chang S-C, Yan J-J, Tseng S-H, Chien L-J, Fang C-T (2013) Excess mortality and long-term disability from healthcare-associated Staphylococcus Aureus infections: a population-based matched cohort study. PLoS One 8:e71055.  https://doi.org/10.1371/journal.pone.0071055
  3. 3.
    Wertheim HF, Vos MC, Ott A, van Belkum A, Voss A, Kluytmans JA et al (2004) Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet 364:703–705.  https://doi.org/10.1016/S0140-6736(04)16897-9 CrossRefPubMedGoogle Scholar
  4. 4.
    Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532.  https://doi.org/10.1056/NEJM199808203390806 CrossRefPubMedGoogle Scholar
  5. 5.
    Nixon M, Jackson B, Varghese P, Jenkins D, Taylor G (2006) Methicillin-resistant Staphylococcus aureus on orthopaedic wards. J Bone Joint Surg Br 88-B:812–817.  https://doi.org/10.1302/0301-620X.88B6.17544 CrossRefGoogle Scholar
  6. 6.
    Taylor AR (2013) Methicillin-resistant Staphylococcus aureus infections. Prim Care 40:637–654.  https://doi.org/10.1016/j.pop.2013.06.002 CrossRefPubMedGoogle Scholar
  7. 7.
    Widmer AF, Lakatos B, Frei R (2015) Strict infection control leads to low incidence of methicillin-resistant Staphylococcus aureus bloodstream infection over 20 years. Infect Control Hosp Epidemiol 36:702–709.  https://doi.org/10.1017/ice.2015.28 CrossRefPubMedGoogle Scholar
  8. 8.
    Parker MT, Hewitt JH (1970) Originally published as volume 1, issue 7651 methicillin resistance in Staphylococcus aureus. Lancet 295:800–804.  https://doi.org/10.1016/S0140-6736(70)92408-6 CrossRefGoogle Scholar
  9. 9.
    Lee Y-J, Chen J-Z, Lin H-C, Liu H-Y, Lin S-Y, Lin H-H et al (2015) Impact of active screening for methicillin-resistant Staphylococcus aureus (MRSA) and decolonization on MRSA infections, mortality and medical cost: a quasi-experimental study in surgical intensive care unit. Crit Care 19:143CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    (2012) The current role of pulsed-field gel electrophoresis in methicillin-resistant Staphylococcus aureus (MRSA) typing and the retrospective identification of outbreaks. Eur J Microbiol Immunol 2:128–133.  https://doi.org/10.1556/EuJMI.2.2012.2.5
  11. 11.
    Holtfreter S, Grumann D, Schmudde M, Nguyen HTT, Eichler P, Strommenger B et al (2007) Clonal distribution of superantigen genes in clinical Staphylococcus aureus isolates. J Clin Microbiol 45:2669–2680.  https://doi.org/10.1128/JCM.00204-07 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Catry B, Latour K, Jans B, Vandendriessche S, Preal R, Mertens K et al (2014) Risk factors for methicillin resistant Staphylococcus aureus: a multi-laboratory study. PLoS One 9:e89579.  https://doi.org/10.1371/journal.pone.0089579
  13. 13.
    Mehraj J, Akmatov MK, Strömpl J, Gatzemeier A, Layer F, Werner G et al (2014) Methicillin-sensitive and methicillin-resistant Staphylococcus aureus nasal carriage in a random sample of non-hospitalized adult population in northern Germany. PLoS One 9:e107937.  https://doi.org/10.1371/journal.pone.0107937 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Khawcharoenporn T, Tice AD, Grandinetti A, Chow D (2010) Risk factors for community-associated methicillin-resistant Staphylococcus aureus cellulitis–and the value of recognition. Hawaii Med 69:232Google Scholar
  15. 15.
    Mediavilla JR, Chen L, Mathema B, Kreiswirth BN (2012) Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA). Curr Opin Microbiol 15:588–595.  https://doi.org/10.1016/j.mib.2012.08.003 CrossRefPubMedGoogle Scholar
  16. 16.
    Miller LG, Kaplan SL (2009) Staphylococcus aureus: a community pathogen. Infect Dis Clin N Am 23:35–52.  https://doi.org/10.1016/j.idc.2008.10.002 CrossRefGoogle Scholar
  17. 17.
    van Bijnen EME, Paget J, de Lange-de Klerk ES, den Heijer CDJ, Versporten A, Stobberingh EE et al (2015) Antibiotic exposure and other risk factors for antimicrobial resistance in nasal commensal Staphylococcus aureus : an ecological study in 8 European countries. PLoS One 10:e0135094.  https://doi.org/10.1371/journal.pone.0135094 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Van Cleef BA, Broens EM, Voss A, Huijsdens XW, Züchner L, Van Benthem BHB et al (2010) High prevalence of nasal MRSA carriage in slaughterhouse workers in contact with live pigs in The Netherlands. Epidemiol Infect 138:756–763.  https://doi.org/10.1017/S0950268810000245 CrossRefPubMedGoogle Scholar
  19. 19.
    Christiansen B, Häfner H, Thomsen J, Martiny H, Okpara-Hofmann J, Regnath T, Synozwik I, Trautmann M, Wendt C (2005) MIQ 22: Krankenhaushygienische Untersuchungen, Teil I. Elsevier. Available at: http://shop.elsevier.de/miq-22-krankenhaushygienische-untersuchungen-teil-i-9783437226366.html Accessed 27 May 2016
  20. 20.
    Matuschek E, Brown DFJ, Kahlmeter G (2014) Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect 20:O255–O266.  https://doi.org/10.1111/1469-0691.12373 CrossRefPubMedGoogle Scholar
  21. 21.
    Mellmann A, Weniger T, Berssenbrügge C, Rothgänger J, Sammeth M, Stoye J et al (2007) Based upon repeat pattern (BURP): an algorithm to characterize the long-term evolution of Staphylococcus aureus populations based on spa polymorphisms. BMC Microbiol 7:98.  https://doi.org/10.1186/1471-2180-7-98 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Strommenger B, Kettlitz C, Weniger T, Harmsen D, Friedrich AW, Witte W (2006) Assignment of Staphylococcus isolates to groups by spa typing, SmaI macrorestriction analysis, and multilocus sequence typing. J Clin Microbiol 44:2533–2540.  https://doi.org/10.1128/JCM.00420-06 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Grumann D, Ruotsalainen E, Kolata J, Kuusela P, Järvinen A, Kontinen VP et al (2011) Characterization of infecting strains and Superantigen-neutralizing antibodies in Staphylococcus aureus bacteremia. Clin Vaccine Immunol 18:487–493.  https://doi.org/10.1128/CVI.00329-10 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mellmann A, Friedrich AW, Rosenkötter N, Rothgänger J, Karch H, Reintjes R et al (2006) Automated DNA sequence-based early warning system for the detection of methicillin-resistant Staphylococcus aureus outbreaks. PLoS Med 3:e33.  https://doi.org/10.1371/journal.pmed.0030033 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Strommenger B, Braulke C, Heuck D, Schmidt C, Pasemann B, Nübel U et al (2008) Spa typing of Staphylococcus aureus as a frontline tool in epidemiological typing. J Clin Microbiol 46:574–581.  https://doi.org/10.1128/JCM.01599-07 CrossRefPubMedGoogle Scholar
  26. 26.
    van der Donk CFM, Schols JMGA, Schneiders V, Grimm K-H, Stobberingh EE (2013) Antibiotic resistance, population structure and spread of Staphylococcus aureus in nursing homes in the Euregion Meuse-Rhine. Eur J Clin Microbiol Infect Dis 32:1483–1489.  https://doi.org/10.1007/s10096-013-1901-1 CrossRefPubMedGoogle Scholar
  27. 27.
    Herrmann M, Petit C, Dawson A, Biechele J, Halfmann A, von Müller L et al (2013) Methicillin-resistant Staphylococcus aureus in Saarland, Germany: a statewide admission prevalence screening study. PLoS One 8:e73876.  https://doi.org/10.1371/journal.pone.0073876 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Warnke P, Harnack T, Ottl P, Kundt G, Podbielski A (2014) Nasal screening for Staphylococcus aureus—daily routine with improvement potentials. PLoS One 9:e89667.  https://doi.org/10.1371/journal.pone.0089667 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
  30. 30.
    Warnke P, Warning L, Podbielski A (2014) Some are more equal—a comparative study on swab uptake and release of bacterial suspensions. PLoS One 9:e102215.  https://doi.org/10.1371/journal.pone.0102215 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Warnke P, Redanz S, Zaatreh S, Podbielski A (2016) Augmented recovery of microorganisms from swabs by homogenization: a novel standardizable high-throughput approach. Diagn Microbiol Infect Dis 84:16–18.  https://doi.org/10.1016/j.diagmicrobio.2015.10.004 CrossRefPubMedGoogle Scholar
  32. 32.
    Price CS, Williams A, Philips G, Dayton M, Smith W, Morgan S (2008) Staphylococcus aureus nasal colonization in preoperative orthopaedic outpatients. Clin Orthop 466:2842–2847.  https://doi.org/10.1007/s11999-008-0337-x CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Heizmann P, Heizmann WR, Hetzer R (2005) MRSA: Resistenzmechanismen, Epidemiologie, Risikofaktoren, Prophylaxe, Therapie. Z Für Herz-Thorax- Gefäßchirurgie 19:78–88.  https://doi.org/10.1007/s00398-005-0486-0 CrossRefGoogle Scholar
  34. 34.
    Kuehnert MJ, Kruszon-Moran D, Hill HA, McQuillan G, McAllister SK, Fosheim G et al (2006) Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001–2002. J Infect Dis 193:172–179.  https://doi.org/10.1086/499632 CrossRefPubMedGoogle Scholar
  35. 35.
    Olsen K, Falch BM, Danielsen K, Johannessen M, Ericson Sollid JU, Thune I et al (2012) Staphylococcus aureus nasal carriage is associated with serum 25-hydroxyvitamin D levels, gender and smoking status. The Tromsø staph and skin study. Eur J Clin Microbiol Infect Dis 31:465–473.  https://doi.org/10.1007/s10096-011-1331-x CrossRefPubMedGoogle Scholar
  36. 36.
    Andersen PS, Larsen LA, Fowler VG, Stegger M, Skov RL, Christensen K (2013) Risk factors for Staphylococcus aureus nasal colonization in Danish middle-aged and elderly twins. Eur J Clin Microbiol Infect Dis 32:1321–1326.  https://doi.org/10.1007/s10096-013-1882-0 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Campbell KA, Cunningham C, Hasan S, Hutzler L, Bosco JA (2015) Risk factors for developing Staphylococcus aureus nasal colonization in spine and arthroplasty surgery. Bull Hosp Jt Dis (2013) 73:276–281Google Scholar
  38. 38.
    Wang J-T, Liao C-H, Fang C-T, Chie W-C, Lai M-S, Lauderdale T-L et al (2009) Prevalence of and risk factors for colonization by methicillin-resistant Staphylococcus aureus among adults in community settings in Taiwan. J Clin Microbiol 47:2957–2963.  https://doi.org/10.1128/JCM.00853-09 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Durmaz R, Tekerekoğlu MS, Kalcioğlu T, Ozturan O (2001) Nasal carriage of methicillin-resistant Staphylococcus aureus among smokers and cigarette factory workers. New Microbiol 24:143–147PubMedGoogle Scholar
  40. 40.
    Ozlü T, Cay M, Akbulut A, Yekeler H, Naziroglu M, Aksakal M (1999) The facilitating effect of cigarette smoke on the colonization of instilled bacteria into the tracheal lumen in rats and the improving influence of supplementary vitamin E on this process. Respirology 4:245–248CrossRefPubMedGoogle Scholar
  41. 41.
    Ertel A, Eng R, Smith SM (1991) The differential effect of cigarette smoke on the growth of bacteria found in humans. Chest 100:628–630CrossRefPubMedGoogle Scholar
  42. 42.
    Huber GL, Pochay VE, Mahajan VK, McCarthy CR, Hinds WC, Davies P et al (1977) The effect of chronic exposure to tobacco smoke on the antibacterial defenses of the lung. Bull Eur Physiopathol Respir 13:145–156PubMedGoogle Scholar
  43. 43.
    El Ahmer OR, Essery SD, Saadi AT, Raza MW, Ogilvie MM, Weir DM et al (1999) The effect of cigarette smoke on adherence of respiratory pathogens to buccal epithelial cells. FEMS Immunol Med Microbiol 23:27–36CrossRefPubMedGoogle Scholar
  44. 44.
    McEachern EK, Hwang JH, Sladewski KM, Nicatia S, Dewitz C, Mathew DP et al (2015) Analysis of the effects of cigarette smoke on staphylococcal virulence phenotypes. Infect Immun 83:2443–2452.  https://doi.org/10.1128/IAI.00303-15 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Goldstein-Daruech N, Cope EK, Zhao K-Q, Vukovic K, Kofonow JM, Doghramji L et al (2011) Tobacco smoke mediated induction of sinonasal microbial biofilms. PLoS One 6:e15700.  https://doi.org/10.1371/journal.pone.0015700 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kulkarni R, Antala S, Wang A, Amaral FE, Rampersaud R, Larussa SJ et al (2012) Cigarette smoke increases Staphylococcus aureus biofilm formation via oxidative stress. Infect Immun 80:3804–3811.  https://doi.org/10.1128/IAI.00689-12 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Jaspers I (2014) Cigarette smoke effects on innate immune mechanisms in the nasal mucosa. Potential effects on the microbiome. Ann Am Thorac Soc 11(Suppl 1):S38–S42.  https://doi.org/10.1513/AnnalsATS.201306-154MG CrossRefPubMedGoogle Scholar
  48. 48.
    Radek KA, Elias PM, Taupenot L, Mahata SK, O’Connor DT, Gallo RL (2010) Neuroendocrine nicotinic receptor activation increases susceptibility to bacterial infections by suppressing antimicrobial peptide production. Cell Host Microbe 7:277–289.  https://doi.org/10.1016/j.chom.2010.03.009 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Raza MW, Essery SD, Elton RA, Weir DM, Busuttil A, Blackwell C (1999) Exposure to cigarette smoke, a major risk factor for sudden infant death syndrome: effects of cigarette smoke on inflammatory responses to viral infection and bacterial toxins. FEMS Immunol Med Microbiol 25:145–154CrossRefPubMedGoogle Scholar
  50. 50.
    Qu F, Cui E, Guo T, Li H, Chen S, Liu L et al (2010) Nasal colonization of and clonal transmission of methicillin-susceptible Staphylococcus aureus among Chinese military volunteers. J Clin Microbiol 48:64–69.  https://doi.org/10.1128/JCM.01572-09 CrossRefPubMedGoogle Scholar
  51. 51.
    Köck R, Mellmann A, Schaumburg F, Friedrich AW, Kipp F, Becker K (2011) The epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) in Germany. Dtsch Ärztebl Int 108:761–767.  https://doi.org/10.3238/arztebl.2011.0761 PubMedPubMedCentralGoogle Scholar
  52. 52.
    Manuela A, Dana T, Costinela G, Michaela D, Gabriela G (2014) Epidemiological aspects of staphylococcal infections of skin and soft tissue. Acta Medica Mediterr 30:917–921Google Scholar
  53. 53.
    Gorwitz RJ, Kruszon-Moran D, McAllister SK, McQuillan G, McDougal LK, Fosheim GE et al (2008) Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–2004. J Infect Dis 197:1226–1234CrossRefPubMedGoogle Scholar
  54. 54.
    Price A, Sarween N, Gupta I, Baharani J (2015) Meticillin-resistant Staphylococcus aureus and meticillin-susceptible Staphylococcus aureus screening in a cohort of haemodialysis patients: carriage, demographics and outcomes. J Hosp Infect 90:22–27CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • S. Neidhart
    • 1
  • S. Zaatreh
    • 1
  • A. Klinder
    • 2
  • S. Redanz
    • 3
  • R. Spitzmüller
    • 4
  • S. Holtfreter
    • 5
  • P. Warnke
    • 3
  • A. Alozie
    • 2
  • V. Henck
    • 5
  • A. Göhler
    • 6
  • M. Ellenrieder
    • 1
  • M. AbouKoura
    • 7
  • D. Divchev
    • 7
  • D. Gümbel
    • 4
  • M. Napp
    • 4
  • G. Steinhoff
    • 2
  • C. Nienaber
    • 7
  • A. Ekkernkamp
    • 4
  • W. Mittelmeier
    • 1
  • C. Güthoff
    • 8
  • A. Podbielski
    • 3
  • D. Stengel
    • 8
  • R. Bader
    • 1
  1. 1.Biomechanics and Implant Technology Research Laboratory, Department of OrthopedicsUniversity Medicine RostockRostockGermany
  2. 2.Department of Cardiac Surgery, Heart Center RostockUniversity Medicine RostockRostockGermany
  3. 3.Institute of Medical Microbiology, Virology and HygieneUniversity Medicine RostockRostockGermany
  4. 4.Department of Trauma, Reconstructive Surgery and Rehabilitation MedicineUniversity Medicine GreifswaldGreifswaldGermany
  5. 5.Institute for Immunology and Transfusion Medicine, Department for ImmunologyUniversity Medicine GreifswaldGreifswaldGermany
  6. 6.Friedrich Loeffler Institute of Medical MicrobiologyUniversity Medicine GreifswaldGreifswaldGermany
  7. 7.Department of CardiologyHeart CenterRostockGermany
  8. 8.Center for Clinical ResearchBG Klinikum Unfallkrankenhaus Berlin GmbHBerlinGermany

Personalised recommendations